Conference paper Open Access

An Anomaly Detection Mechanism for IEC 60870-5-104

Panagiotis Radoglou Grammatikis; Panagiotis Sarigiannidis; Antonios Sarigiannidis; Dimitrios Margounakis; Apostolos Tsiakalos; Georgios Efstathopoulos


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4064667</identifier>
  <creators>
    <creator>
      <creatorName>Panagiotis Radoglou Grammatikis</creatorName>
      <affiliation>Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Panagiotis Sarigiannidis</creatorName>
      <affiliation>Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Antonios Sarigiannidis</creatorName>
      <affiliation>SIDROCO, Anaximandrou, Limassol, Cyprus</affiliation>
    </creator>
    <creator>
      <creatorName>Dimitrios Margounakis</creatorName>
      <affiliation>SIDROCO, Anaximandrou, Limassol, Cyprus</affiliation>
    </creator>
    <creator>
      <creatorName>Apostolos Tsiakalos</creatorName>
      <affiliation>SIDROCO, Anaximandrou, Limassol, Cyprus</affiliation>
    </creator>
    <creator>
      <creatorName>Georgios Efstathopoulos</creatorName>
      <affiliation>0INF, Imperial Offices, London, UK</affiliation>
    </creator>
  </creators>
  <titles>
    <title>An Anomaly Detection Mechanism for IEC 60870-5-104</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Anomaly Detection</subject>
    <subject>Cybersecurity</subject>
    <subject>IEC-60870- 5-104</subject>
    <subject>Supervisory Control and Data Acquisition</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-09-18</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4064667</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/MOCAST49295.2020.9200285</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/h2020_spear_project</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The transformation of the conventional electricity grid into a new paradigm called smart grid demands the appropriate cybersecurity solutions. In this paper, we focus on the security of the IEC 60870-5-104 (IEC-104) protocol which is commonly used by Supervisory Control and Data Acquisition (SCADA) systems in the energy domain. In particular, after investigating its security issues, we provide a multivariate Intrusion Detection System (IDS) which adopts both access control and outlier detection mechanisms in order to detect timely possible anomalies against IEC-104. The efficiency of the proposed IDS is reflected by the Accuracy and F1 metrics that reach 98% and 87%, respectively.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/787011/">787011</awardNumber>
      <awardTitle>SPEAR: Secure and PrivatE smArt gRid</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
49
120
views
downloads
Views 49
Downloads 120
Data volume 33.7 MB
Unique views 47
Unique downloads 117

Share

Cite as