Conference paper Open Access

Localization using Dual Fail/Safe Filters with Sensor Fusion in Complex Urban Environments

Park, Munsu; Hwang, Sung-Ho


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Autonomous vehicle</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sensor Fusion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">HD Map</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Localization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Complex Urban Environment</subfield>
  </datafield>
  <controlfield tag="005">20201003122651.0</controlfield>
  <controlfield tag="001">4062844</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="g">EVS33</subfield>
    <subfield code="a">33rd Electric Vehicle Symposium &amp; Exposition presented by the Electric Drive Transportation Association (EDTA)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Hwang, Sung-Ho</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">770203</subfield>
    <subfield code="z">md5:64a51d3257065c06f8b51af956d26d86</subfield>
    <subfield code="u">https://zenodo.org/record/4062844/files/FinalPaper_Park_Munsu.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-evs33</subfield>
    <subfield code="o">oai:zenodo.org:4062844</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Park, Munsu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Localization using Dual Fail/Safe Filters with Sensor Fusion in Complex Urban Environments</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-evs33</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;It is difficult to obtain reliable data without proper calibration because variations in illumination and surroundings in complex urban environments affect the sensor input. This study proposes a localization algorithm using sensor fusion in complex urban environments, that applies a fail/safe filter to improve the reliability of data obtained from sensors that reduce dependence on the characteristics of the surrounding environments. This study proposes a sensor fusion localization algorithm in complex urban environments that applies a fail/safe filter to improve the reliability of data obtained from the sensors that are less affected by the characteristics of the surrounding environments. LiDAR reflections provide data that is unaffected by illumination changes, and can be used for sensor fusion by calibrating in-vehicle sensors rather than expensive IMUs. The fail/safe filter compares the curvature of the lane or the distance traveled, and determines the boundary point using the rate of change of the sensor and vehicle model. The boundary points and position data are compared to determine the reliability of the data. The performance of the proposed filter was verified by applying it to a real vehicle in K-City and Suseong Alpha City.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4062843</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4062844</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
39
20
views
downloads
All versions This version
Views 3939
Downloads 2020
Data volume 15.4 MB15.4 MB
Unique views 3131
Unique downloads 1717

Share

Cite as