Conference paper Open Access

Localization using Dual Fail/Safe Filters with Sensor Fusion in Complex Urban Environments

Park, Munsu; Hwang, Sung-Ho

It is difficult to obtain reliable data without proper calibration because variations in illumination and surroundings in complex urban environments affect the sensor input. This study proposes a localization algorithm using sensor fusion in complex urban environments, that applies a fail/safe filter to improve the reliability of data obtained from sensors that reduce dependence on the characteristics of the surrounding environments. This study proposes a sensor fusion localization algorithm in complex urban environments that applies a fail/safe filter to improve the reliability of data obtained from the sensors that are less affected by the characteristics of the surrounding environments. LiDAR reflections provide data that is unaffected by illumination changes, and can be used for sensor fusion by calibrating in-vehicle sensors rather than expensive IMUs. The fail/safe filter compares the curvature of the lane or the distance traveled, and determines the boundary point using the rate of change of the sensor and vehicle model. The boundary points and position data are compared to determine the reliability of the data. The performance of the proposed filter was verified by applying it to a real vehicle in K-City and Suseong Alpha City.

Files (770.2 kB)
Name Size
FinalPaper_Park_Munsu.pdf
md5:64a51d3257065c06f8b51af956d26d86
770.2 kB Download
11
6
views
downloads
All versions This version
Views 1111
Downloads 66
Data volume 4.6 MB4.6 MB
Unique views 66
Unique downloads 44

Share

Cite as