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We present a machine-learning method to prioritize the cell
types most responsive to biological perturbations within high-
dimensional single-cell data. We validate our method, Augur
(https://github.com/neurorestore/Augur), on a compendium of
single-cell RNA-seq, chromatin accessibility, and imaging tran-
scriptomics datasets. We apply Augur to expose the neural cir-
cuits that enable walking after paralysis in response to spinal
cord neurostimulation.

Within a decade, single-cell technologies have scaled from
individual cells to entire organisms1,2. Investigators are now
able to quantify RNA and protein expression, resolve their
spatial organization in complex tissues, and dissect their reg-
ulation in hundreds of thousands of cells. This exponen-
tial increase in scale is enabling a transition from atlasing of
healthy tissues to delineating the cell type-specific responses
to disease and experimental perturbation3–5. This shift re-
quires a parallel analytical transition, from cataloging the
marked molecular differences between cell types to resolv-
ing more subtle phenotypic alterations within cell types. Ex-
isting tools focus on identifying individual genes or proteins
with statistically significant differences between conditions6.
However, inferences at the level of individual analytes are
ill-suited to address the broader question of which cell types
are most responsive to a perturbation in the multidimensional
space of single-cell data. We propose that such prioritizations
could clarify the contribution of each cell type to organismal
phenotypes such as disease state, or identify cellular subpop-
ulations that mediate the response to external stimuli such
as drug treatment. Cell type prioritization could also guide
downstream investigation, including the selection of experi-
mental systems such as Cre lines or FACS gates to support
causal experiments.

Here, we introduce Augur, a versatile method to prioritize
cell types based on their molecular response to a biological
perturbation (Fig. 1a). We reasoned that cell types most re-
sponsive to a perturbation should be more separable than less

affected ones. In turn, we hypothesized that the relative dif-
ficulty of this separation would provide a quantitative basis
for cell type prioritization. We formalized this difficulty as a
classification task, asking how accurately disease or pertur-
bation state could be predicted from highly multidimensional
single-cell measurements. For each cell type, Augur with-
holds a proportion of sample labels, and trains a classifier on
the labeled subset. The classifier predictions are compared
with the experimental labels, and cell types are prioritized
based on the area under the receiver operating characteristic
curve (AUC) of these predictions in cross-validation.

Because the amount of available training data typically
has a strong effect on classifier performance, we antici-
pated that the uneven relative abundances of cell types in
single-cell datasets could confound cell type prioritization.
In both simulated data and a compendium of 22 published
scRNA-seq datasets, we found that the AUC scaled with
the number of cells, as opposed to the perturbation intensity
(Supplementary Figs. 1a-b and 2). To overcome this con-
founding factor, Augur repeatedly draws small samples from
the dataset, and reports the mean AUC across samples. We
found this procedure abolished the dependence on the total
number of cells (Fig. 1b-c, Supplementary Fig. 1c-d, and
Supplementary Fig. 2). Moreover, we established that Au-
gur correctly prioritized cell types subjected to simulated per-
turbations of known intensities, finding the AUC increased
monotonically with both the amount and magnitude of sim-
ulated differential expression (Fig. 1d and Supplementary
Fig. 1e-f).

Prior studies have attempted to prioritize cell types based
on the relative number of genes passing a statistical threshold
for differential expression (DE)5,12. In both simulated and
experimental datasets, however, we found the number of DE
genes was strongly correlated with the number of cells per
type (Supplementary Figs. 1g-i and 2c), causing abundant
cell types with modest transcriptional perturbations to be pri-
oritized over rare but more strongly perturbed cell types (Fig.
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1e and Supplementary Fig. 1j).
We applied Augur to several scRNA-seq datasets in or-

der to evaluate its ability to prioritize cell types involved in
well-understood biological processes. Augur detected the ex-
pected dose-response relationship in bone marrow-derived
mononuclear phagocytes from four species stimulated with
LPS for between two and six hours, with similar AUCs across
species7 (Fig. 1f). We observed similar results for Jurkat
cells stimulated with PMA/ionomycin13 (Supplementary
Fig. 3a). We next applied Augur to a scRNA-seq dataset
of PBMCs stimulated with interferon4, comparing cell type
prioritizations to an independent microarray experiment on

FACS-purified cells8. We observed an almost perfect corre-
spondence between Augur and the number of DE genes in
this FACS gold standard (Fig. 1g). In contrast, the number
of differentially expressed genes in the scRNA-seq dataset
was weakly or negatively correlated with the gold standard
(Fig. 1g-h and Supplementary Fig. 3b). Finally, we applied
Augur to prioritize neuron subtypes of the ventromedial hy-
pothalamus in response to various behavioral stimuli9. Augur
prioritizations were correlated with the relative induction of
intermediate early gene (IEG) transcription across a range of
social behaviors (Fig. 1i-j and Supplementary Fig. 3c).

We then evaluated the reproducibility of cell type pri-
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Fig. 1 | Augur correctly prioritizes cell types in synthetic and experimental single-cell datasets.
a, Schematic overview of Augur.
b, AUCs of Augur and a naive random forest classifier without subsampling in simulated scRNA-seq datasets containing increasing
numbers of cells. Cell type prioritizations are confounded by training dataset size for the naive classifier, but Augur abolishes this
confounding factor. The mean and standard deviation of ten simulation replicates are shown.
c, Pearson correlations between the AUC of each cell type, and the number of cells of that type sequenced, across a compendium of
22 scRNA-seq datasets, for Augur and a naive random forest classifier without subsampling.
d, Augur AUCs scale monotonically with both the proportion of DE genes and the magnitude of DE in simulated cell populations.
e, Relationship between number of DE genes detected by a representative test for single-cell differential gene expression (Wilcoxon
rank-sum test), and the proportion of differentially expressed genes simulated between the two populations, for simulated populations
of between 100 and 1,000 cells.
f, Augur cell type prioritizations track with duration of LPS exposure in a cross-species scRNA-seq experiment7. Grey points show
AUCs with sample labels randomly permuted.
g-h, Cell type prioritization in matched single-cell4 and bulk8 transcriptomic profiles of PBMCs after interferon stimulation.
g, Left, Augur cell type prioritizations mirror the number of DE genes in a microarray dataset of FACS-purified cells. Right, the number
of DE genes detected in the scRNA-seq dataset by a Wilcoxon rank-sum test is uncorrelated with the FACS gold standard.
h, Correlation coefficients between cell type prioritizations (AUC or number of DE genes) in the scRNA-seq dataset and the FACS gold
standard.
i-j, Cell type prioritization in the mouse ventromedial hypothalamus reflects induction of IEG transcription.
i, Correlation between AUC and the difference in the first principal component of IEG expression (∆IEG eigengene) engaging in
aggressive behavior.
j, Pearson correlation coefficients between cell type-specific AUC and ∆IEG eigengene values for eleven behavioral stimuli9.
k, Reproducibility of cell type prioritization in two independent scRNA-seq studies of Alzheimer’s disease5,10.
l, Augur cell type prioritizations in a scATAC-seq dataset11 track with the number of DE genes in an RNA-seq dataset of FACS-purified
cells.

oritization by applying Augur to two independent scRNA-
seq studies comparing individuals with Alzheimer’s disease
and healthy controls5,10. Augur produced nearly identi-
cal prioritizations, identifying the most profound transcrip-
tional perturbations in neurons and endothelial cells (Fig.
1k). Similarly, we asked whether Augur could prioritize cell
types from identical experimental perturbations, but obtained
with orthogonal single-cell technologies. We applied Au-
gur to scRNA-seq14 and single-cell imaging transcriptomics
(STARmap)15 datasets from the visual cortex after exposure
to light. Despite technical differences between the datasets,
Augur consistently prioritized excitatory neurons, and even
ranked subpopulations of excitatory neurons from specific
cortical layers in identical order (Supplementary Fig. 3d).
Finally, we applied Augur to single-cell ATAC-seq data from
bone marrow-derived cells stimulated with LPS11, and found
that Augur cell type prioritizations mirrored a gold standard
from bulk RNA-seq of FACS-sorted cells (Fig. 1l)16.

Augur can flexibly incorporate continuous or multi-class
sample labels in addition to conventional treatment versus
control designs. We applied Augur to prioritize cell types
of the prefrontal cortex based on quantitative measures of
amyloid burden, neuritic plaques, and neurofibrillary tan-
gles in individuals with Alzheimer’s disease5. Cell type
prioritizations were strongly correlated to those based on
clinical diagnosis, reflecting the pathogenesis of the disease
(Supplementary Fig. 4). Likewise, Augur can readily be
applied to prioritize cell types in datasets with more than two
perturbations (Supplementary Fig. 5).

To apply Augur to single-cell datasets with more com-
plex experimental designs, we devised a test for differential
cell type prioritization (Supplementary Fig. 6a). Apply-
ing differential prioritization to a single-cell imaging tran-

scriptomics (MERFISH) dataset17, Augur identified multi-
ple neuron subtypes preferentially activated during parenting
in either male or female mice (Supplementary Fig. 6b-c).
Similarly, in a scRNA-seq dataset18, Augur prioritized sev-
eral neuron subtypes with differential responses to whisker
lesioning in Cx3cr1+/– and Cx3cr1–/– mice (Supplementary
Fig. 6d).

We also considered whether Augur could be applied di-
rectly to single-cell measures of transcriptome dynamics,
such as the RNA velocity19, in order to specifically priori-
tize cell types undergoing an acute response to a perturba-
tion on the timescale of transcription. We found that both
experimental measurements20 and computational inference19

of transcriptional activity consistently captured more infor-
mation than total RNA abundance in perturbations ranging
from 45 min to 4 h in duration (Supplementary Fig. 7a-g).
Conversely, we confirmed that transcriptome dynamics did
not confer an appreciable information gain to cell type pri-
oritization when the perturbation is chronic (Supplementary
Fig. 7h-i).

We finally aimed to demonstrate the relevance of Augur
to discover new biological mechanisms. We21 and others22,23

have shown that targeted epidural electrical stimulation of
the lumbar spinal cord (TESS), augmented by monoaminer-
gic stimulation24, restores walking after spinal cord injury in
individuals with paralysis. However, the neural circuits en-
gaged by this treatment remain enigmatic. We devised an
experiment to expose the neuron subtypes recruited by TESS
using single-cell transcriptomics (Fig. 2a). Mice received a
severe contusion of the thoracic spinal cord that led to per-
manent paralysis of both legs. In the presence of serotoner-
gic and D1 agonists, TESS immediately enabled walking in
paralyzed mice (Fig. 2b-c). We performed single-nucleus

Skinnider et al. | Cell type prioritization in single-cell data bioRχiv | 3

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 23, 2019. . https://doi.org/10.1101/2019.12.20.884916doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.884916
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2 | Augur identifies neuron subtypes that enable walking after paralysis.
a, Top, single-nucleus RNA-sequencing experimental design to prioritize neuron subtypes recruited by TESS. Middle, chronophotog-
raphy of mice in the presence or absence of TESS and monoaminergic agonists. Bottom, stick diagram decompositions of right leg
movements; leg endpoint trajectory with acceleration at toe-off; activity of extensor and flexor muscles of the ankle.
b, Principal component analysis of gait parameters for each condition (small circles). Large circles show the average per group.
c, Bar plot shows the average scores on principal component 1 (PC1), which quantify the locomotor performance of paralyzed mice (n
= 3) and mice walking with TESS (n = 3).
d, Uniform manifold approximation and projection (UMAP) visualization of 18,514 nuclei, revealing the six major cell types of the mouse
lumbar spinal cord.
e, UMAP visualization of 6,035 neurons subjected to an additional round of sub-clustering and the 39 identified neuron subtypes.
f, UMAP neuron visualization, colored by Augur cell type prioritization (AUC). The seven prioritized neuron subtypes with the highest
AUCs are highlighted.
g, Monosynaptically restricted anterograde tracing in Vsx2-Cre mice reveals V2a interneurons densely innervating motor neurons
(ChAT).
h, Dot plot showing expression of the immediate early gene Fos in neuron subtypes prioritized by Augur.
i, Confirmation of colocalization of V2a, V1/V2b, and Spp1 marker genes (Vsx2, Slc6a5, and Spp1 respectively) and Fos by RNAscope
in situ hybridization. Schematic indicates location of imaging for each marker within the spinal cord.

RNA-seq of 18,514 nuclei from mice walking for 30 min
with TESS and control mice, identifying all the major cell
types of the lumbar spinal cord (Fig. 2d and Supplementary
Fig. 8). We then subjected the 6,035 identified neurons to
an additional round of clustering. This analysis identified 39
neuron subtypes expressing classical marker genes and were
detected across experimental conditions (Fig. 2e and Sup-
plementary Fig. 9).

We reasoned that applying Augur directly to the RNA

velocity of these neurons could prioritize subtypes that are
immediately engaged by the therapy. Previous studies sug-
gested that TESS generates an electrical field that depolarises
proprioceptive afferent fibers25. Consistent with this predic-
tion, Augur robustly prioritized interneurons with the molec-
ular profiles of V2a and V1/V2b neurons, which are known
to receive synapses from proprioceptive afferents (Fig. 2f
and Supplementary Fig. 10). V2a interneurons have been
implicated in left-right alternation26, whereas V2b interneu-
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rons are critical for flexor-extensor alternation27. Augur also
prioritized Spp1-positive neurons, typically associated withs
motoneurons (Fig. 2f). Virus-mediated anatomical tracing
in transgenic mice revealed dense synaptic projections from
the prioritized interneurons onto motoneurons (Fig. 2g). The
pronounced induction of immediate early genes in V2a and
V1/V2b interneurons (Fig. 2h) confirmed their activation in
response to TESS-enabled walking, a finding we verified by
in situ hybridization (Fig. 2i and Supplementary Fig. 11).
In contrast, interneurons not prioritized by Augur showed
minimal amounts of Fos mRNA (Supplementary Fig. 11).
These results illustrate the value of Augur to expose neural
circuits underlying complex behaviors.

Augur is computationally efficient, requiring a median of
49.7 min and 2.3 GB of RAM to analyze our compendium of
22 scRNA-seq datasets (Supplementary Fig. 12a-b). Inher-
ent to the design of Augur is the ability to scale to datasets
containing hundreds of thousands or even millions of cells
on a laptop (Supplementary Fig. 12c-d). Moreover, Augur
is robust to sequencing depth and classifier hyperparameters
(Supplementary Figs. 13-14). As an efficient and princi-
pled method for cell type prioritization, we envision that Au-
gur will facilitate the interpretation of a growing resource of
single-cell data spanning multiple experimental conditions,
and help single-cell technologies realize their potential to
pinpoint cell types underlying organism-level phenotypes.
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Methods
Design and implementation of Augur. Single-cell technolo-
gies increasingly allow investigators to collect datasets that span
multiple experimental conditions: for instance, patients with a par-
ticular disease compared to healthy controls, animals exposed to a
specific behavioral stimulus compared to unstimulated animals, or
organisms subject to a particular genetic manipulation and wild-type
controls. A number of tools have been developed to identify indi-
vidual analytes (for instance, genes, proteins, or accessible chro-
matin regions) that exhibit statistically significant differences be-
tween experimental conditions6,28. However, for many biological
questions, the analytical level of interest is not individual differen-
tially abundant features, but rather the specific cell types that are
most strongly affected by a stimulus. For instance, investigators
may design a single-cell transcriptomics experiment to identify par-
ticular cell types in a complex tissue that undergo the most marked
transcriptional changes in response to treatment with a drug, in or-
der to clarify its mechanism of action. We refer to the process of
ranking cell types based on their molecular response to a biological
perturbation as cell type prioritization.

We designed Augur as a method to prioritize cell types based
on their molecular response to a perturbation in highly multidimen-
sional single-cell data. We reasoned that cells undergoing a pro-
found response to a given experimental stimulus should become
more separable, in the space of molecular measurements, than cells
that remain unaffected by the stimulus. We sought to design a
quantitative metric of this separability that would be robust to het-
eroscedasticity between cell types, and account for the specific bio-
logical and technical variability within each cellular subpopulation.
Accordingly, Augur quantifies this separability by asking how read-
ily the experimental sample labels associated with each cell (e.g.,
treatment vs. control) can be predicted from molecular measure-
ments alone. In practice, this is achieved by training a machine-
learning model specific to each cell type, to predict the experimental
condition from which each individual cell originated. The accuracy
of each cell type-specific classifier is evaluated in cross-validation,
providing a quantitative basis for cell type prioritization.

We reasoned that an ideal method for cell type prioritization
would make no assumptions about the distributions of features
provided as input29, and more broadly, would be agnostic to the
particular molecular features provided as input: that is, it would
readily incorporate single-cell RNA-seq30–33, proteomics34,35,
epigenomics11,36–38, and imaging transcriptomics15,17,39 datasets,
among other modalities. Accordingly, Augur uses a random forest40

classifier to predict sample labels for each cell type. Random forests
have the advantage that they do not make any parametric assump-
tions about the distribution of the input features, and consequently
are robust to both the nature of the molecular measurements them-
selves, as well as to the specific pre-processing and normalization
steps applied to obtain the input features-by-cells matrix.

When training machine-learning models, model performance
generally improves as the size of the training dataset increases. We
anticipated that this well-known phenomenon could present a crit-
ical confound to cell type prioritization, because cell types are un-
evenly represented in most single-cell datasets for both biological
and technical reasons. To account for this confound, Augur repeat-
edly draws small samples of fixed size from each cell-type specific
gene expression matrix, and performs cross-validation on these sub-
sampled matrices (by default, 50 subsamples of 20 cells per condi-
tion are drawn). Augur then reports the mean cross-validation AUC
across many small subsamples. We confirmed that this procedure
abolishes the relationship between the number of cells of a partic-

ular type and the cross-validation AUC, in both real and simulated
datasets (Fig. 1b-c and Supplementary Figs. 1-2).

To further improve computational efficiency, Augur incorpo-
rates two feature selection steps to minimize the number of analytes
provided to the classifier as input. First, for each cell type in turn,
Augur removes genes with little cell-to-cell variation within that cell
type. This procedure, commonly referred to as highly variable gene
identification in the context of single-cell RNA-seq41, also has the
effect of removing noise. To flexibly account for the mean-variance
relationship without making assumptions about the form of this rela-
tionship, Augur fits a local polynomial regression between the mean
and coefficient of variation42,43 using the ‘loess’ function, and ranks
genes based on their residuals in this model. A fixed quantile of the
most highly variable genes are retained for each cell type (speci-
fied using the ‘var_quantile’ parameter, which defaults to 50% in
order to remove only features that show less-than-expected varia-
tion based on their mean abundance). Second, for each iteration,
a random proportion of features are randomly removed to improve
speed and memory usage (specified using the ‘feature_perc’ param-
eter, which also defaults to 50%). In combination, these steps sig-
nificantly reduce the size of the matrix that must be taken out of a
sparse representation for input to the classifier, from ~20,000 genes
to ~5,000 genes in a typical scRNA-seq dataset. To avoid discarding
information in datasets where fewer analytes are measured, feature
selection is only performed for datasets exceeding a certain mini-
mum number of features (with this cutoff set, by default, to 1,000).

Implementation. Augur is implemented as an R package, avail-
able from https://github.com/neurorestore/Augur (Supplementary
Fig. 15). Augur takes as input a features-by-cells (e.g., genes-by-
cells for scRNA-seq) matrix, and a data frame containing metadata
associated with each cell, minimally including the cell type annota-
tions and sample labels to be predicted. Alternatively, a Seurat44,
monocle345, or SingleCellExperiment46 object can be provided as
input. To optimize both speed and memory usage, all computations
are implemented for sparse matrices, up to the classification proce-
dure itself. Because the feature selection, classification, and cross-
validation procedures are independent for each cell type, Augur can
readily be parallelized over the cell types in the input dataset, using
the ‘mclapply’ package for parallelization, and runs on four cores
by default.

Multiclass classification and regression. Augur quantifies the
accuracy by which cell type labels can be predicted from molecu-
lar measurements using the area under the receiver operating char-
acteristic curve (AUC), or the macro-averaged AUC in the case of
multiclass classification. For experiments in which the perturbation
can be interpreted as a continuous or ordinal variable, the classifi-
cation objective is replaced with a regression task, and the accuracy
of the corresponding random forest regression models is quantified
using the concordance correlation coefficient (CCC)47, a measure
of both the precision and accuracy of the relationship between pre-
dicted and experimental sample labels. By default, Augur returns
the mean AUC (or CCC) for each cell type as a summary of cell
type classification, but also calculates a larger suite of metrics for
each fold of each subsampling iteration, including accuracy, pre-
cision, recall, sensitivity, specificity, negative predictive value, and
positive predictive value, for users interested in investigating predic-
tions in more detail.

Differential prioritization. To compare cell type prioritizations
between related conditions, we devised a permutation-based test for
differential prioritization. In order to obtain a null distribution of
AUCs for each cell type that reflected variability associated with
number of cells sequenced, read depth, and other technical factors,
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we permuted sample labels within each cell type, and ran Augur
on the permuted dataset. We repeated this permutation procedure
1,000 times. We then compared the observed difference between
condition-specific AUCs, ∆AUCobs, for each cell type to the dif-
ference under permuted sample labels, ∆AUCrnd, and calculated
permutation p-values48.

Simulations. We initially tested Augur on simulated scRNA-seq
data, using the ‘Splatter’ R package49. Initial simulation parameters
were estimated from the Kang et al. dataset4 using the ‘splatEsti-
mate’ function, and populations of 100–1,000 cells from two exper-
imental conditions were generated, in increments of 100. We then
simulated differential expression in varying proportions of genes
(using the ‘de.prob’ parameter), and with varying magnitudes (us-
ing the ‘de.facLoc’ parameter). To specifically evaluate the ability
of Augur to abolish the relationship between the number of cells in
a particular population and the AUC of sample label classification,
we compared Augur to cell type prioritization using an identical
feature selection and classification procedure, but without drawing
small subsamples from the dataset, by setting the ‘n_subsamples’
argument to 0. We additionally implemented a cell type prioritiza-
tion scheme based on the number of differentially expressed genes
between conditions, as previously described5,12. Cell types were
ranked based on the number of differentially expressed genes us-
ing six different tests for differential expression in single-cell tran-
scriptomics datasets (t-test, Wilcoxon rank-sum test, likelihood ra-
tio test50, logistic regression51, MAST52, and a negative binomial
generalized linear model), implemented through the Seurat ‘Find-
Markers’ function.

RNA velocity analysis. To generate intronic and exonic read
count matrices for each dataset, data were downloaded from the
SRA and converted to FASTQ format using the SRA toolkit. In
the case of inDrops14 data, annotated BAM files were obtained us-
ing dropTag53 with flags -s -S -c. Reads were then aligned to the
latest Ensembl release (GRCm38.93), using STAR (v.2.5.3a)54. For
Drop-seq data12,55, files were first converted from FASTQ to BAM
format using the Picard function ‘FastqtoSam’. Reads were then
aligned to the latest Ensembl release using the Drop-seq toolkit
(https://github.com/broadinstitute/Drop-seq)56. Next, count matri-
ces of exonic and intronic reads were obtained using dropEst53 with
flags -m -V -L eEBA -F. Barcodes were filtered to match those
present in the processed datasets uploaded to the Gene Expression
Omnibus (GEO) for each dataset. RNA velocity was subsequently
calculated using the ‘velocyto’ R package19. Features were first
chosen by filtering for genes with a minimum expression value per
cell type using the function ‘filter.genes.by.cluster.expression’, with
filters adjusted based on the read count distributions for each dataset
(GSE102827: exon filter, 0.5, intron filter, 0.1; GSE130597: exon
filter, 0.03, intron filter, 0.02; GSE103976, exon filter, 0.05, intron
filter, 0.03). We then calculated gene-relative velocity using kNN
pooling with k = 10 (default) and fit.quantile = 0.01. By default,
the function ‘gene.relative.velocity.estimates’ in velocyto.R returns
a matrix containing only those features for which accurate estimates
of γ and velocity could be obtained. Consequently, we ran Augur
without either variable gene or random gene filters, as feature se-
lection had already been performed during the creation of the RNA
velocity matrix used as input. To compare AUCs for cell type pri-
oritization on matrices of exonic or total counts, we retained only
those genes for which velocity estimates could be calculated, and
likewise disabled the variable gene and random gene filters. All
other parameters were left as default.

Computational benchmarking. To quantify the computational
resources required for cell type prioritization (Supplementary Fig.
12), we ran Augur with default settings on our compendium of 22
scRNA-seq datasets. The R package ‘peakRAM’ was used to mon-
itor peak memory usage, and the base R function ‘system.time’ was
used to monitor wall time.

Hyperparameter analysis. To characterize the robustness of
Augur prioritizations to hyperparameters associated with its sub-
sampling or feature selection procedures, the random forest clas-
sifier, and the choice of classifier itself, we evaluated the impact of
systematically varying each of these parameters (Supplementary
Fig. 13). We first investigated the impact of the number and size
of subsamples from each cell-type-specific gene expression matrix
on cell type prioritization, finding the ranks of each cell type stabi-
lized around 50 subsamples. While larger subsample sizes generally
yielded more robust ranks, these thresholds also precluded analysis
of several cell types represented by fewer cells in existing datasets,
and consequently we opted for an inclusive subsample size of 20
cells per experimental condition. Similarly, we ran Augur on gene
expression matrices consisting of the top 10–100% of highly vari-
able genes, followed by selection of a random subset of 10–100%
of these, but found Augur was generally robust to the features pro-
vided as input. (We used the default thresholds of 50% on the vari-
able gene and random selection filters throughout, unless otherwise
specified). To assess the robustness of Augur prioritizations to ran-
dom forest hyperparameters, we varied the number of trees in the
forest between 10–1,000, the minimum number of cells required
to split an internal node between 2–10, and the number of features
sampled per split between 2–500. Finally, to assess the impact of the
classifier itself, we implemented L1-penalized logistic regression in
Augur using the R package ‘glmnet’, with the optimal value of the
regularization parameter λ determined for each iteration using the
function ‘cv.glmnet’.

Downsampling analysis. Motivated by the observation that
only a fraction of reads at conventional depths are required to detect
transcriptional programs and assign cell types57, we also evaluated
the impact of sequencing depth on Augur cell type prioritizations by
downsampling published scRNA-seq datasets to between 5–95% of
their original depths (Supplementary Fig. 14). Reads were down-
sampled from the processed count matrices using the ‘downsam-
pleMatrix’ function from the ‘DropletUtils’ package58.

Preprocessing and analysis of published single-cell
datasets. Data from a total of 29 published single-cell studies
was processed and analyzed with Augur as described below. Unless
otherwise noted, expression matrices and metadata were stored as
Seurat objects, and genes detected in less than three cells were
removed.

Arneson et al., 201859. scRNA-seq data from the hippocampus
of mice after a mild traumatic brain injury (mTBI), delivered us-
ing a mild fluid percussion injury model, and matched controls was
obtained from GEO (accession: GSE101901). Metadata, including
cell type annotations, was provided by the authors. AUCs were cal-
culated by comparing cells from mTBI and control mice.

Avey et al., 201860. scRNA-seq data from the nucleus accum-
bens of mice treated with morphine for 4 h and saline-treated con-
trols was obtained from GEO (accession: GSE118918). Cells iden-
tified as doublets and non-unique barcodes were removed. Meta-
data, including cell type annotations, was provided by the authors.
AUCs were calculated by comparing cells from morphine- and
saline-treated mice.
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Aztekin et al., 201961. scRNA-seq data from regeneration-
competent (NF stage 40-41) Xenopus laevis tadpoles was obtained
from ArrayExpress (E-MTAB-7716). AUCs were calculated by
comparing cells from tadpoles at 1 d post-amputation to control tad-
poles.

Cheng et al., 201962. scRNA-seq data from intestinal crypt cells
in wild-type and Hmgcs2 knockout mice was obtained directly from
the authors of the original publication. AUCs were calculated by
comparing wild type and control mice.

Erhard et al., 201920. scSLAM-seq data from CMV-infected
or uninfected fibroblasts was obtained from GEO (accession:
GSE115612), including both total count and new-to-total RNA ra-
tio (NTR) matrices as calculated by the authors. In cases where
the NTR could not be estimated, missing values were imputed as
the median value. AUCs were calculated by comparing cells from
CMV-infected and uninfected fibroblasts.

Grubman et al., 201910. scRNA-seq data from post-mortem en-
torhinal cortex of patients with Alzheimer’s disease and matched
controls was obtained directly from the authors prior to publication.
Cells annotated as ‘undetermined’ and ‘doublet’ were removed prior
to downstream analysis. AUCs were calculated by comparing cells
from individuals with Alzheimer’s disease and control individuals.

Gunner et al., 201918. scRNA-seq data from the barrel cor-
tex before or after whisker lesioning (sensory deprivation) in
Cx3cr1+/– and Cx3cr1–/– mice was obtained from GEO (accession:
GSE129150). Cell types not included in Supplementary Fig. 10
of the original publication were removed. AUCs were calculated
by comparing cells from deprived and control animals, in Cx3cr1+/–

and Cx3cr1–/– mice separately. Differential prioritization was ap-
plied to identify neuron subtypes preferentially affected by whisker
lesioning in mice of either genotype. For the analysis of confound-
ing factors presented in Supplementary Fig. 2, only cells from
homozygous mice were used.

Haber et al., 20173. scRNA-seq data from epithelial cells
of the mouse small intestine in healthy mice and after two
days of Salmonella infection was obtained from GEO (accession:
GSE92332), using the Drop-seq data collected by the original pub-
lication. AUCs were calculated by comparing cells from infected
and uninfected mice.

Hagai et al., 20187. scRNA-seq data from bone marrow-derived
mononuclear phagocytes from four different species (rat, rabbit, pig,
mouse) exposed to lipopolysaccharide (LPS) for 2, 4, or 6 h was ob-
tained from ArrayExpress (accession: E-MTAB-6754). Cells whose
total number of counts was above the 97.5th percentile were ex-
cluded as possible doublets. AUCs were calculated by comparing
cells from each LPS-stimulated timepoint (2, 4, and 6 h) to a com-
mon population of unstimulated controls in each species separately.

Hrvatin et al., 201814. scRNA-seq data from the visual cortex
of mice housed in darkness, then exposed to light for 0 h, 1 h, or
4 h was obtained from GEO (accession: GSE102827). Cell types
labeled as ‘NA’ were removed from downstream analyses, as were
three small populations of cells from the subiculum, hippocampus,
and retrosplenial cortex, for consistency with the original publica-
tion. AUCs were calculated at each timepoint separately by com-
paring cells in each light exposure group (1 h or 4 h) to the common
population of unexposed control cells. Cell types were compared
to those defined by the three-dimensional intact-tissue sequencing
method STARmap15 by averaging gene expression profiles over the
139 genes quantified in both experiments, then taking the Spear-
man correlation between average gene expression profiles for each
cell type. We also calculated macro-averaged AUCs in a multiclass
classification task incorporating cells stimulated with light for 0 h,

1 h, or 4 h, and compared AUCs and permutation p-values between
multiclass classification and each of the three possible pairwise bi-
nary classification tasks (i.e., 0 h vs. 1 h, 0 h vs. 4 h, and 1 h vs.
4 h). The 4 h comparison was used for the analysis of confound-
ing factors presented in Supplementary Fig. 2. For RNA velocity
analysis, raw sequencing data was obtained from the SRA (acces-
sion: PRJNA399082) and processed as described above.

Hu et al., 201763. snRNA-seq from the cerebral
cortex of mice after pentylenetetrazole (PTZ)-induced
seizure and saline-treated controls was obtained from the
Google Drive folder accompanying the original publication
(https://github.com/wulabupenn/Hu_MolCell_2017). AUCs were
calculated by comparing cells from PTZ- and saline-treated mice.

Jaitin et al., 201964. scRNA-seq data from white
adipose tissue of mice fed either a high-fat diet or nor-
mal chow for six weeks were obtained from the Bit-
bucket repository accompanying the original publication
(https://bitbucket.org/account/user/amitlab/projects/ATIC). Meta-
data, including cell type annotations, were provided by the authors.
AUCs were calculated by comparing cells from high-fat diet and
normal chow-fed mice.

Kang et al., 20184. scRNA-seq data from peripheral blood
mononuclear cells (PBMCs) stimulated with recombinant IFN-β for
6 h and unstimulated PBMCs was obtained from GEO (accession:
GSE96583). Doublets and unclassified cells were removed. AUCs
were calculated for each of the eight distinct cell types (CD14+
monocytes, CD4 T cells, dendritic cells, NK cells, CD8 T cells,
B cells, megakaryocytes, and FCGR3A+ monocytes) by compar-
ing IFN-stimulated and unstimulated cells. These AUCs were sub-
sequently compared to a bulk (microarray) dataset obtained from
FACS-sorted mouse PBMC populations exposed to purified IFN-α,
2 h after subcutaneous injection8. Differentially expressed genes
were obtained from the original publication. For this comparison,
only the five cell types included in both studies were examined. We
additionally compared the number of genes called as differentially
expressed in each cell type within the scRNA-seq data to the bulk
gold standard using six different tests for differential expression, as
described above.

Kim et al., 20199. scRNA-seq data from the ventromedial hy-
pothalamus of mice exposed to one of eleven behavioral stimuli and
control mice was obtained from the Mendeley repository accompa-
nying the original publication. Cell type annotations were provided
directly by the authors. For each behaviour, AUCs were calculated
by comparing cells from animals engaging in the behaviour to the
common population of control animals. IEG ‘eigengenes’ were cal-
culated as the first principle component of IEG expression65, using
a previously published list of immediate early genes14, and the dif-
ference in average IEG eigengene between conditions per cell type
was compared to the AUC. For the analysis of confounding factors
presented in Supplementary Fig. 2, only the aggression condition
was used.

Lareau et al., 201911. scATAC-seq data from resting and LPS-
stimulated bone marrow cells was obtained from GEO (accession:
GSE123580). AUCs for monocytes, CD4 T cells, and B cells were
calculated by comparing stimulated and unstimulated cells, and
compared to the number of genes called as differentially expressed
in an independent bulk RNA-seq experiment using a low-input mi-
crofluidic platform to analyze FACS-purified cells16. Differentially
expressed genes were obtained from the original publication.

Mathys et al., 20195. snRNA-seq data from post-mortem pre-
frontal cortex of patients with Alzheimer’s disease and matched
controls was obtained from Synapse (accession: syn18681734). Pa-
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tient data and additional metadata were also obtained from Synapse
(accessions: syn3191087 and syn18642926, respectively). For the
comparison to the Grubman et al. 2019 dataset10, the coarse-grained
clustering level was used, annotated as ‘broad.cell.type’. Excitatory
and inhibitory neurons were combined into a single category of neu-
rons in order to match the labels between datasets. AUCs were then
calculated for each coarse-grained cell type by comparing cells from
Alzheimer’s disease and control patients. For regression analyses,
CCCs were calculated using three continuous, neuropathologically
determined patient outcomes as sample labels, including neurofibril-
lary tangles (‘nft’), neuritic plaques (‘plaq_n’), and amyloid burden
(‘amyloid’).

McGinnis et al., 201913. scRNA-seq data from Jurkat T cells
treated with PMA/ionomycin for between 15 min and 24 h was
obtained from GEO (accession: GSE129578), with metadata in-
ferred from MULTI-seq barcodes obtained (including cell types and
stimulus duration for each cell) obtained from the supplementary
materials accompanying the original publication. Mouse cells and
genes and unstimulated human embryonic kidney cells profiled in
the same experiment were removed. AUCs were calculated by com-
paring cells from each PMA/ionomycin-stimulated timepoint (15
min, 30 min, 1 h, 2 h, 4 h, 6 h, and 24 h) to a common popula-
tion of unstimulated controls in each species separately.

Moffitt et al., 201817. MERFISH data from the hypothalamic
preoptic region in male and female mice displaying parenting be-
haviors and control mice was obtained from the Dryad repository
accompanying the original publication. Cell types were assigned
as specific neuron subtypes for neurons, and coarse cell type labels
otherwise. Cells identified as putative doublets were removed. Five
blank control barcodes were also removed, as was Fos, which was
not measured in several animals. AUCs were calculated by compar-
ing cells from parenting and control mice, after which differential
prioritization was applied to identify neuron subtypes preferentially
activated during parenting behaviors in male or female mice. Addi-
tionally, to assess whether the neuron subtypes that displayed sex-
specific responses to parenting were also transcriptionally distinct in
control animals, we used Augur to prioritize cell types in the naive
population, using animal sex as the sample label.

Ordovas-Montanes et al., 201866. scRNA-seq data from eth-
moid sinus cells of patients with chronic rhinosinusitis (CRS), with
and without nasal polyps, was obtained from Supplementary Table
2 of the original publication. AUCs were calculated by comparing
cells from patients with polyposis and non-polyposis CRS.

Rossi et al., 201912. scRNA-seq data from the hypothalamus
of mice fed either a high-fat diet or normal chow for between 9-
16 weeks was obtained directly from the authors, in the form of a
processed Seurat44 object. Cells annotated as ‘unclassified’ were
removed. AUCs were calculated by comparing cells from high-
fat diet and normal chow-fed mice. For RNA velocity analysis,
raw sequencing data was obtained from the SRA (accession: PR-
JNA540713) and processed as described above.

Sathyamurthy et al., 201867. snRNA-seq data from the spinal
cord parenchyma of adult mice exposed to formalin or matched con-
trols was obtained from GEO (accession: GSE103892). Cell types
with blank annotations, or annotated as ‘discarded’, were removed.
AUCs were calculated by comparing cells from mice exposed to
formalin and control animals.

Schirmer et al., 201968. snRNA-seq data from cortical and
subcortical areas from the brains of patients with multiple scle-
rosis and control tissue from unaffected individuals was obtained
from the web browser accompanying the original publication
(https://cells.ucsc.edu/ms). AUCs were calculated by comparing

cells from multiple sclerosis and control patients.
Smillie et al., 201969. scRNA-seq data from colon biopsies of

ulcerative colitis (UC) patients and healthy individuals was obtained
from the Broad Institute Single Cell Portal (accession: SCP259).
Cells from epithelial stromal, and immune fractions were com-
bined into a single matrix, and AUCs were calculated by compar-
ing cells from UC patients (including both inflamed and adjacent
non-inflamed tissue) and controls.

Wagner et al., 201870. scRNA-seq data from zebrafish embryos
between 14-16 hours post-fertilization, with either the chordin locus
or a control locus (tyrosinase) disrupted by CRISPR-Cas9 knock-
out, was obtained from GEO (accession: GSE112294). AUCs were
calculated by comparing cells from chordin- or tyrosinase-targeted
embryos.

Wang et al., 201815. STARmap data from the visual
cortex of mice housed in the dark and exposed to light
for 0 h or 1 h before sacrifice was obtained from the
STARmap website (https://www.starmapresources.com/data), and
converted to count matrices using the STARmap python package
(https://github.com/weallen/STARmap). Cells with less than 200 or
more than 2000 counts were removed. The Rerg gene was removed
from analysis as it was not measured in some samples. Cells with
unassigned types were also removed, and the data was normalized
to counts per million. AUCs were calculated by comparing cells
from light-exposed and control mice.

Wirka et al., 201971. scRNA-seq data from the aortic root of
mice fed a high-fat diet or normal chow for eight weeks was ob-
tained from GEO (accession: GSE131776). Metadata, including
cell type annotations, was provided by the authors, and unannotated
cells were removed. AUCs were calculated by comparing cells from
high-fat diet and normal chow-fed mice.

Wu et al., 201755. scRNA-seq data from the amygdala of mice
subjected to 45 min of immobilization stress and control mice, and
dissociated in the presence of actinomycin D following the Act-seq
protocol, was obtained from GEO (accession: GSE103976). For
RNA velocity analysis, raw sequencing data was obtained from the
SRA (accession: PRJNA407818) and processed as described above.
AUCs were calculated by comparing cells from stressed and control
mice.

Ximerakis et al., 201972. scRNA-seq data from whole brains
of young (2-3 mo) and old (21-23 mo) mice was obtained from
the Broad Institute Single Cell Portal (accession: SCP263), using
coarse cell annotations as cell type labels. AUCs were calculated by
comparing cells from young and old mice.

Zhang et al., 201930. scRNA-seq data from synovial tissues
from patients with rheumatoid arthritis (RA) or osteoarthritis (OA),
obtained from ultrasound-guided biopsies or joint replacements,
were obtained directly from the authors of the original publication.
AUCs were calculated by comparing cells from RA and OA pa-
tients.

Application of Augur to TESS. To experimentally validate the
ability of Augur to uncover new biological mechanisms and iden-
tify neuron subtypes involved in complex behaviors, we applied
Augur to investigate the neural circuits underlying the functional
response to targeted epidural electrical stimulation (TESS) using
single-nucleus transcriptomics.

Animal model. Experiments were conducted on adult male or
female C57BL/6 mice (15-35 g body weight, 12-30 weeks of age).
Vsx2:Cre (MMRRC//036672-UCD) transgenic mice were used and
maintained on a mixed genetic background (129/C57BL/6). Hous-
ing, surgery, behavioral experiments and euthanasia were performed
in compliance with the Swiss Veterinary Law guidelines. Animal
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care, including manual bladder voiding, was performed twice daily
for the first 3 weeks after injury and once daily for the remaining
post-injury period. All procedures and surgeries were approved by
the Veterinary Office of the Canton of Geneva (Switzerland).

Surgical procedures and post-surgical care. Surgical procedures
were performed as previously described73–76. Briefly, a laminec-
tomy was made at the mid-thoracic level (T9 vertebra). We per-
formed a contusion injury using a force-controlled spinal cord im-
pactor (IH-0400 Impactor, Precision Systems and Instrumentation
LLC, USA77), as previously described73,78. The applied force was
set to 90 kdyn73. We next performed a partial laminotomy over
spinal segments L2 and S1 and positioned the epidural stimulation
electrodes (AS632, Cooner Wire, USA), and secured them at the
midline to the dura. A common ground wire (~1 cm of Teflon re-
moved at the distal end) was inserted subcutaneously over the right
shoulder. All wires were connected to a percutaneous amphenol
connector (Omnetics Connector Corporation, USA) cemented to the
skull of the animal. Analgesia (buprenorphine, Essex Chemie AG,
Switzerland, 0.01–0.05 mg per kg, s.c.) was provided for three days
after surgery.

Electrochemical stimulation. To reactivate lumbar motor cir-
cuits immediately prior to sacrifice and tissue harvest, we applied
our previously described electrochemical neuromodulation ther-
apy consisting of a serotoninergic replacement therapy and epidu-
ral electrical stimulation73,75. Briefly, five minutes before train-
ing, mice received a systemic (i.p.) administration of quipazine
(5-HT2A/C, 0.3–0.6 mg/kg) and subcutaneous 8-OH-DPAT (5-
HT1A/7, 0.1–0.2 mg/kg). Continuous epidural electrical stimula-
tion (100 Hz bursts of 6 pulses at 0.2 ms, 100–300 µA, 700 Hz)
was delivered through L2 and S1 electrodes. This therapy immedi-
ately restored locomotion. Training was conducted quadrupedally
on a three-dimensional robot with adjustable robotic body weight
support against gravity (Robomedica, USA).

Kinematic recordings. Kinematics were recorded according to
our previously described procedures, which have been extensively
detailed24,73–75,79,80. Bilateral leg kinematics were captured using
a Vicon high-speed motion capture system (Vicon Motion Systems,
UK), consisting of 12 infrared cameras (200 Hz). We attached re-
flective markers bilaterally at the iliac crest, the greater trochanter
(hip joint), the lateral condyle (knee joint), the lateral malleolus (an-
kle), and the distal end of the fifth metatarsophalangeal joint.

Kinematic analysis. For both the left and right legs, 15 step cy-
cles were extracted for each mouse. A total of 75 parameters quan-
tifying kinematic and kinetic features were computed for each leg
and each gait cycle accordingly24,73–75,79,80. To evaluate differences
between experimental conditions and groups, as well as the most
relevant parameters to explain these differences, we implemented a
multistep statistical procedure based on principal component analy-
sis, as previously described24,73–75,79,80.

Single-nucleus RNA sequencing. Single nucleus dissociation
was completed with a modified protocol based on our previous
work67. Briefly, animals were euthanized by isoflurane inhalation
and cervical dislocation. The thoracic SCI site was rapidly dissected
and frozen on dry ice. Spinal cords were dounced in 500 µl sucrose
buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 5 mM CaCl2,
3 mM Mg-acetate, 0.1 mM EDTA, 1 mM DTT) and 0.1% Triton
X-100 with the Kontes Dounce Tissue Grinder. 2 mL of sucrose
buffer was added and filtered through a µm cell strainer. The lysate
was subsequently centrifuged at 3200 g for 10 min at 4◦C. The su-
pernatant was decanted, and 3 mL of sucrose buffer added to the
pellet and incubated for 1 min. The pellet was homogenized using
an Ultra-Turrax and 12.5 mL of density buffer (1 M sucrose, 10 mM

HEPES [pH 8.0], 3 mM Mg-acetate, 1 mM DTT) was added below
the nuclei layer. The tube was centrifuged at 3200 g at 4◦C and su-
pernatant immediately poured off. The nuclei on the bottom half of
the tube wall were collected with 100 µl PBS with 0.04% BSA and
0.2 U/µl RNase inhibitor. Resuspended nuclei were filtered through
a 30 µm strainer. The nuclei suspension was finally adjusted to 1000
nuclei/µl.

Library preparation. Library preparation was carried out with
10x Genomics Chromium Single Cell Kit Version 2. The nuclei
suspension was added to the Chromium RT mix to achieve load-
ing numbers of 5,000. For downstream cDNA synthesis (13 PCR
cycles), library preparation and sequencing, the manufacturer’s in-
structions were followed.

Read alignment. Reads were aligned to the latest Ensembl re-
lease (GRCm38.93), and a matrix of unique molecular identifier
(UMI) counts was obtained using CellRanger count81. Velocyto19

was subsequently used to obtain count matrices of exonic and in-
tronic reads. Seurat44 was used to calculate quality control metrics,
including the number of genes detected, number of UMIs per cell,
and % mitochondrial genes in order to filter low-quality cells appro-
priately (nUMI < 200; genes expressed in < 3 cells; % mitochondrial
reads > 5%). The matrix used for downstream analysis consisted of
19,954 genes and 18,514 cells.

Clustering and integration. To integrate datasets across differ-
ent experimental conditions, we took advantage of recently devel-
oped bioinformatic tools that align datasets from multiple condi-
tions into a unified space44. Gene expression data was first normal-
ized using regularized negative binomial models82, then integrated
across batches using Seurat44. Batch effects were regressed out us-
ing the ‘latent.vars’ argument. Normalized and integrated gene ex-
pression matrices were clustered using Seurat44 to identify cell types
in the integrated dataset using a standard workflow, including highly
variable gene identification, principal component analysis, nearest-
neighbor graph construction, and graph-based community detection.
Following the identification of coarse-grained cell types (e.g., ‘neu-
ron’), we identified fine-grained neuron subtypes by sub-clustering
major cell types. We used clustering trees83 to guide the decision
of the optimal resolution (Supplementary Fig. 10a). Cell types
were manually annotated by using differential expression analysis to
identify marker genes6,44. Putative cell types were assigned on the
basis of marker gene expression, guided by previous work67,84–86.

RNA velocity. RNA velocity was calculated using the ‘velocyto’
R package19. Velocyto estimates cell velocities from their spliced
and unspliced mRNA content. We generated the annotated spliced
and unspliced reads using the ‘run10x’ function of the Velocyto
command line tool, as described above. We then calculated gene-
relative velocity using kNN pooling with k=10 (default).

Viral tract tracing. All surgeries on mice were performed at
EPFL under general anaesthesia with isoflurane in oxygen-enriched
air using an operating microscope, and rodent stereotaxic apparatus
(David Kopf). To trace the efferent connections of Vsx2 (V2a) neu-
rons AAV-DJ-hSyn Flex mGFP 2 A synaptophysin mRuby (Stan-
ford Vector Core Facility, reference AAV DJ GVVC-AAV-100, titer
1.15E12 genome copies per ml87) was injected on each side of the
cord of Vsx2-Cre mice at the L2 spinal level, 0.25 µL 0.6 mm below
the surface at 0.1 µL per minute using glass micropipettes (ground
to 50 to 100 µm tips) connected via high-pressure tubing (Kopf) to
10-µL syringes under the control of microinfusion pumps.

Immunohistochemistry. After terminal anaesthesia by bar-
biturate overdose, mice were perfused transcardially with 4%
paraformaldehyde and spinal cords processed for immunofluores-
cence as previously described73,88. Primary antibodies were: goat
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anti-choline acetyltransferase (ChAT, 1:50, Millipore, AB144P).
Secondary antibodies were: Alexa Fluor 647 Donkey Anti Goat
(1:200; Life Technologies, AB32849). Immunofluorescence was
imaged digitally using a slide scanner [Olympus VS-120 Slide scan-
ner] or confocal microscope [Zeiss LSM880 + Airy fast module
with ZEN 2 Black software (Zeiss, Oberkochen, Germany)]. Im-
ages were digitally processed using ImageJ (NIH) or Imaris (Bit-
plane, v.9.0.0).

RNAscope. We confirmed the in situ localization of cell type
markers and the expression of the immediate early gene Fos using
RNAscope. Briefly, 16 µm cryosections were obtained from fixed-
frozen spinal cords of animals undergoing identical experimental
procedures. We used these sections to confirm the localization of
Spp1 (cat. no. 435191), Slc6a5 (cat. no. 409741-C3) and Vsx2
(cat. no. 438341). We additionally included an analysis of nega-
tive controls that were not prioritized by Augur including Cck (cat.
no. 402271-C3), Npy (cat. no. 313321), Rorb (cat. no. 444271-
C3), Pnoc (cat. no. 437881), Gal (cat. no. 400961-C3), and
Trh (cat. no. 436811 neurons). These cell types have also been
validated elsewhere67,84–86. We combined gene markers with Fos
(cat. no. 316921-C2) to confirm the presence of immediate early
gene activation in these cell types67. To detect the transcripts we
used the RNAscope assay for fixed frozen tissue (Advanced Cell
Diagnostics)89. Probes were designed and provided by Advanced
Cell Diagnostics, Inc. Staining was performed according to standard
procedures, using the RNAscope Fluorescent Multiplex Reagent Kit
(cat. no. 323133).

Visualization. Throughout the manuscript, box plots show the
median (horizontal line), interquartile range (hinges) and smallest
and largest values no more than 1.5 times the interquartile range
(whiskers), and error bars show the standard deviation.

Code availability. Augur is available from GitHub
(https://github.com/neurorestore/Augur) and as Supplemen-
tary Software 1.

Data availability. Raw sequencing data and count matrices have
been deposited to the Gene Expression Omnibus.
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Supplementary Figure 1. Augur overcomes confounding factors to cell type prioritization in simulated single-cell RNA-seq
datasets.
a-b, Area under the receiver operating characteristic curve (AUC) of a random forest classifier trained in three-fold cross-validation
to distinguish two simulated populations of cells49, with the total number of cells increasing from 100 to 1,000 and the proportion of
differentially expressed genes between the two populations varying from 0% to 100%, a, or the location parameter of the differential
expression factor log-normal distribution varying from 0.1 to 1.0, b.
c-d, As in a-b, but with the naive random forest classifier replaced with the subsampling procedure employed by Augur.
e-f, Relationship between Augur AUC and the proportion of differentially expressed genes, e, or the location parameter of the differential
expression factor log-normal distribution, f, in distinguishing two simulated populations (n = 200 cells total). The mean and standard
deviation of 10 simulation replicates are shown.
g, Cell type prioritizations (AUC or number of differentially expressed genes) for a naive random forest classifier, Augur, and an ex-
emplary single-cell differential expression test6, the Wilcoxon rank-sum test, for two simulated populations of cells with 50% of genes
differentially expressed and a log-normal location parameter of 0.5, with the total number of cells increasing from 100 and 1,000 cells.
Like a naive random forest strategy, the number of differentially expressed genes detected by the Wilcoxon rank-sum test scales linearly
with the number of cells.
h-i, Number of differentially expressed genes detected by six tests for single-cell differential gene expression between two simulated
populations of cells, with the total number of cells increasing from 100 to 1,000 and the proportion of differentially expressed genes
between the two populations varying from 0% to 100%, h, or the location parameter of the differential expression factor log-normal
distribution varying from 0.1 to 1.0, i.
j, Relationship between number of differentially expressed genes detected by five tests for single-cell differential gene expression and
the proportion of differentially expressed genes simulated between the two populations, for simulated populations of between 100 and
1,000 cells (see also Fig. 1e). All single-cell differential expression tests detect a larger number of differentially expressed genes in a
large population of cells with modest transcriptional perturbation (20% of genes differentially expressed) than in a smaller population of
cells with more profound perturbation (70% of genes differentially expressed).
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Supplementary Figure 2. Augur overcomes confounding factors to cell type prioritization in a compendium of published
single-cell RNA-seq datasets.
a, Overview of 22 published scRNA-seq datasets comparing two or more experimental conditions, used to verify the relationship be-
tween cell type prioritizations from a random forest classifier, Augur, or single-cell differential expression tests. Left, heatmap indicating
the species of origin, the sequencing protocol, and whether cells or nuclei were sequenced. Right, properties of each dataset, including
the total number of cell types identified in the original studies; the total number of cells sequenced; the number of cells per type (red
bars indicate mean); and the mean number of reads for cells of each type.
b, Pearson correlations between the AUC of each cell type, and the number of cells of that type sequenced, across 22 datasets for
Augur, bottom, and a naive random forest classifier without subsampling, top, as shown in Fig. 2c.
c, Pearson correlations between the number of differentially expressed genes per cell type, at 5% FDR, and the number of cells of that
type, sequenced across 22 datasets for six statistical tests for differential expression.
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Supplementary Figure 3. Evaluation of cell type prioritization across single-cell modalities.
a, AUCs of Jurkat cells stimulated with PMA/ionomycin for seven time points between 15 min and 24 h, compared to control cells13.
Augur detects the expected dose-response relationship of T cell activation.
b, Relationship between the number of differentially expressed genes by microarray profiling of FACS-sorted mouse PBMCs stimulated
with interferon for 2 h8, and the number of differentially expressed genes in an independent single-cell RNA-seq study of human PBMCs
stimulated with interferon for 6 h4, detected by five statistical tests for single-cell differential gene expression.
c, Relationship between AUCs for cell types of the ventromedial hypothalamus of mice exposed to one of ten behavioral stimuli, as
computed by Augur, and the mean change in the first principle component of intermediate early gene (IEG) expression (∆IEG eigen-
gene), reflecting activation of IEG transcription in that cell type in response to the behavioral stimulus9. Augur cell type prioritizations
reflect induction of neuronal intermediate early genes. See also Fig. 1i.
d, Comparison of cell type prioritization in independent scRNA-seq and single cell imaging transcriptomics (STARmap) studies of the
mouse visual cortex after light exposure. Left, Augur cell type prioritization in the STARmap dataset15. Bottom, Augur cell type prior-
itization in the scRNA-seq dataset14. Center, correspondence between cell types defined in the scRNA-seq and STARmap datasets,
quantified as the Spearman correlation coefficient between average profiles for each cell type across 139 genes present in both
datasets.
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Supplementary Figure 4. Cell type prioritization with continuous sample labels by random forest regression.
a, Cell type prioritization (AUC) in post-mortem prefrontal cortex of individuals with Alzheimer’s disease and healthy controls in the
Mathys et al., 2019 dataset5, and its statistical significance (permutation test; Methods).
b-d, Cell type prioritization (concordance correlation coefficient, CCC) in the Mathys et al., 2019 dataset5 using continuous neuropatho-
logical variables as sample labels. b, Neurofibrillary tangle burden, as determined by microscopic examination of silver-stained slides
from five brain regions. c, Neuritic plaque burden, as determined by microscopic examination of silver-stained slides from five brain
regions. d, Overall amyloid-β level, as determined by immunohistochemistry of eight brain regions.
e-g, Relationship between cell type prioritization in binary classification of Alzheimer’s disease vs. control individuals and regression
of neurofibrillary tangle burden, e; neuritic plaque burden, f; and amyloid burden, g. Cell type prioritizations with continuous sample
labels are strongly and significantly correlated with the case-control binary classification task.
h-j, Cell type prioritization with shuffled sample labels for continuous outcome variables (neurofibrillary tangle burden, h; neuritic plaque
burden, i; and amyloid burden, j). With shuffled labels, the CCC converges to zero.
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Supplementary Figure 5. Cell type prioritization with three or more experimental conditions by multiclass classification.
Comparison of binary and multiclass classification for cells of the mouse visual cortex after exposure to light in the Hrvatin et al., 2018
dataset14.
a-c, Relationship between cell type prioritization in all possible pairwise binary classification tasks (a, 1 h vs. 0 h; b, 4 h vs. 0 h;
c, 4 h vs. 1 h), and the corresponding multiclass classification task (including all three timepoints; macro-averaged AUC). Cell type
prioritizations in multiclass classification are strongly and significantly correlated with each possible binary classification task, reflecting
the incorporation of information from all three experimental conditions.
d-f, Relationship between statistical significance of cell type prioritization in pairwise binary classification and multiclass classification, as
assessed by permutation test (Methods). Cell types with the most significant transcriptional responses to light exposure are consistently
detected in both binary and multiclass classification tasks.
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Supplementary Figure 6. Differential cell type prioritization in single-cell RNA-seq data.
a, Schematic overview of the permutation-based test for differential prioritization with Augur. First, cell type prioritization is performed
within each of two conditions separately, yielding condition-specific AUCs for each cell type. Next, sample labels are randomly permuted
within each cell type, and cell type prioritization is performed on shuffled data, yielding a null distribution of AUCs for each cell type
and condition. AUCs for matching cell types are compared across conditions to calculate a ‘∆AUC score’ for each cell type, and a null
distribution of ∆AUC scores is calculated using the permuted data. Permutation p-values can then be calculated for each cell type,
enabling the identification of statistically significant differences in cell type prioritization between conditions, as well as the condition in
which the cell type is more transcriptionally separable.
b, Neuron subtypes with statistically significant differences in AUC between female and male mice during parenting, in a single-
cell imaging transcriptomics experiment employing multiplexed error robust fluorescence in situ hybridization (MERFISH)17. Eleven
subtypes have significantly higher AUCs in female parents, whereas two have significantly higher AUCs in male parents.
c, Relationship between differential prioritization ∆AUC for parenting between male and female mice, and AUC for sex in naive mice.
Several neuronal subtypes preferentially activated during parenting in female mice are also transcriptionally distinct in naive mice, such
as the I-32 cluster, which is enriched for aromatase expression, and expresses multiple sex steroid hormone receptors17.
d, Neuron subtypes with statistically significant differences in AUC in response to whisker lesioning in Cx3cr1+/– as compared to
Cx3cr1–/– mice, in a single-cell RNA-seq experiment18. Four subtypes are have significantly higher AUCs in homozygous mice, whereas
one subtype has a significantly higher AUC in heterozygous mice.
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Supplementary Figure 7. Cell type prioritization from transcriptional dynamics in acute experimental perturbations.
a, Left, schematic overview of the scSLAM-seq20 workflow. Cells are exposed to the nucleoside analogue 4-thiouridine (4sU), which is
incorporated during transcription and converted to a cytosine analogue by iodoacetamide prior to RNA sequencing. This labeling per-
mits in silico deconvolution of RNA molecules transcribed before and after 4sU exposure (‘old’ and ‘new’, respectively), and calculation
of the ratio of new to total RNA (NTR), an experimental analogue to the computationally determined ‘RNA velocity’19,20. Right, AUCs
for mouse fibroblasts exposed to lytic mouse cytomegalovirus (CMV) at 2 h post-infection, calculated by applying Augur to either total
RNA or the NTR. The greater separability for the NTR reflects additional information specifically captured by the temporal dynamics of
RNA expression in the context of this acute perturbation20.
b-e, Cell type prioritization based on exonic reads, total RNA, or RNA velocity for cells of the mouse visual cortex after exposure to light
for 1 h, b-c, or 4 h, d-e, in the Hrvatin et al., 2018 dataset14. The AUC is significantly higher for RNA velocity than for either exonic
reads (paired t-tests: b, 1 h, p = 6.9 × 10–7; d, 4 h, p = 8.2 × 10–7) or total RNA (c, 1 h, p = 2.8 × 10–7; e, 4 h, p = 3.0 × 10–6),
reflecting additional information specifically captured by acute transcriptional dynamics.
f-g, Cell type prioritization based on exonic reads, total RNA, or RNA velocity in an Act-seq55 dataset, which minimizes transcriptional
changes induced by single-cell dissociation. Cell types of the medial amygdala in mice subjected to 45 min of immobilization stress
and control mice were profiled by Drop-seq56 after treatment with the transcription inhibitor actinomycin D. The AUC is higher for RNA
velocity than for either exonic reads (f, p = 0.026) or total RNA (g, p = 0.053), reflecting additional information specifically captured by
acute transcriptional dynamics, and indicating this is not an artefact related to the transcriptional perturbations known to be induced by
conventional dissociation procedures90.
h-i, Cell type prioritization based on exonic reads, total RNA, or RNA velocity in a chronic perturbation. Cell types of the lateral hypotha-
lamic area were profiled by Drop-seq56 in mice after 9-16 weeks of maintenance on either high-fat diet or control diet12. No significant
difference in AUCs was observed for RNA velocity compared to either exonic reads (h, p = 0.22) or total RNA (i, p = 0.98), consistent
with the time scale of the experimental perturbation.
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Supplementary Figure 8. Single-nucleus RNA-seq detects the major cell types of the lumbar spinal cord across experimental
conditions and replicates.
a, Expression of key marker genes for the six major cell types of the lumbar spinal cord.
b, Top five marker genes for each major cell type of the lumbar spinal cord.
c, Cell type detection across experimental conditions. TESS, targeted electrical epidural stimulation of the lumbar spinal cord.
d, Proportion of cells of each type detected in each experimental condition.
e, Cell type detection across experimental replicates (n = 3 mice per condition).
f, Proportion of cells of each type detected in each experimental replicate.

Skinnider et al. | Cell type prioritization in single-cell data bioRχiv | 21

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 23, 2019. . https://doi.org/10.1101/2019.12.20.884916doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.884916
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 9. Subclustering of single-neuron transcriptomes identifies 39 neuron subtypes in the mouse lumbar
spinal cord.
See also Supplementary Figure 10a.
a, Dot plot showing expression of one marker gene per cell type for the 39 neuron subtypes of the mouse lumbar spinal cord.
b, Neuron subtype detection across experimental conditions. TESS, targeted electrical epidural stimulation of the lumbar spinal cord.
c, Proportion of neurons of each subtype detected in each experimental condition.
d, Neuron subtype detection across experimental replicates (n = 3 mice per condition).
e, Proportion of neurons of each subtype detected in each experimental replicate.
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Supplementary Figure 10. Robustness of Augur cell type prioritizations for mouse lumbar spinal cord neurons.
a, Clustering tree83 of mouse spinal cord neurons over seven clustering resolutions, revealing the hierarchical relationships between
spinal cord neuron subtypes. Node color reflects AUCs for cell type prioritization in targeted electrical epidural stimulation.
b, AUCs for each of 37 neuron subtypes represented by at least 20 cells in both control and TESS-treated mice.
c-e, Robustness of cell type prioritization for neuron subtypes of the mouse lumbar spinal cord.
c, Impact of systematically withholding cells from each of six replicates (n = 3 per group) on cell type prioritization. Left, cell type
prioritization with all six replicates, as in Fig. 2f. Grey tiles indicate neuron subtypes that were not represented by at least 20 cells in
each condition after removal of cells from an experimental replicate.
d, Impact of varying Augur parameters, including the number of subsamples and the size of each subsample; random forest-specific
hyperparameters (number of trees, minimum split size, number of features sampled per split); and the choice of classifier (random
forest, RF; L1-penalized logistic regression, LR) on cell type prioritization. Grey tiles indicate sample sizes larger than the number of
cells of that type in the dataset.
e, Impact of varying RNA velocity parameters, including exonic and intronic expression filters, the number of cells in the k-nearest
neighbors pooling, and the extreme quantiles used to fit γ coefficients, on cell type prioritization.
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Supplementary Figure 11. Absence of colocalization of canonical marker genes for cell types not prioritized by Augur and
Fos by RNAscope in situ hybridization.
Schematic indicates imaging location for each marker within the spinal cord.
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Supplementary Figure 12. Computational efficiency of cell type prioritization.
a, Elapsed real time (“wall time”) for Augur cell type prioritization on a compendium of 22 scRNA-seq datasets, with Augur run on four
cores. The median wall time, 49.7 min, is highlighted.
b, Peak memory usage for Augur cell type prioritization on the scRNA-seq dataset compendium. The median peak memory usage, 2.3
GB, is highlighted.
c-d, Pearson correlations between the number of cell types per dataset, the number of cells per dataset, the median number of genes
detected per cell, or the median number of reads per cell and wall time, c, or peak memory usage, d. Statistically significant correlations
are shown in blue. Augur runtime scales approximately linearly with the number of cell types, while RAM usage scales with both the
number of cell types and the number of cells.
e, Scatterplots showing the relationships between wall time (top) and peak memory usage (bottom), and the dataset properties shown
in c-d, for each of 22 scRNA-seq datasets in the compendium.
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Supplementary Figure 13. Robustness of cell type prioritization to Augur hyperparameters.
a-f, Robustness of cell type prioritization for peripheral blood mononuclear cells stimulated with recombinant interferon-β in the Kang
et al., 2018 dataset4.
g-l, Robustness of cell type prioritization for ethmoid sinus cells from patients with chronic rhinosinusitis (CRS) in the Ordovas-Montanes
et al., 2018 dataset66.
a and g, Cell type prioritization (AUCs) under default parameters.
b and h, Impact of varying the number of subsamples drawn from each cell type-specific gene expression matrix, or the size of each
subsample, on cell type prioritization.
c and i, Impact of varying random forest-specific hyperparameters, including the number of trees, minimum split size, and features
sampled per split, on cell type prioritization. Grey tiles indicate sample sizes larger than the number of cells of that type in the dataset.
d and j, Impact of replacing the random forest classifier (RF) with a L1-penalized logistic regression model (LR) on cell type prioritization.
e and k, Impact of varying the proportion of highly variable genes selected from the original gene expression matrix, left, or the
proportion of genes randomly selected in each subsample after the application of the variable gene filter, right, on cell type prioritization.
f and l, Impact of simultaneously varying both the variable gene and random selection filters on cell type prioritization.
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Supplementary Figure 14. Impact of sequencing read depth on cell type prioritization.
a-c, Augur cell type prioritization in simulated populations of n = 200 cells with between 0% and 100% of genes differentially expressed
between experimental conditions, and read counts randomly downsampled from 100% to 5% of the original depth in 5% increments.
Cell type prioritizations are robust to downsampling sequencing depth in simulated data; however, adequate depth becomes increas-
ingly important with more subtle perturbations, shown by varying the location parameter of the differential expression factor log-normal
distribution between 0.2, a; 0.5, b; and 0.8, c.
d-i, Augur cell type prioritizations in six published scRNA-seq datasets with varying numbers of cell types, with read counts randomly
downsampled from 100% to 5% of the original depth in 5% increments.
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Supplementary Figure 15. Overview of the Augur algorithm.
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