Journal article Open Access

A Low-Power VGA Vision Sensor with Embedded Event Detection for Outdoor Edge Applications

Zou, Yu; Gottardi, Massimo; Lecca, Michela; Perenzoni, Matteo


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Background subtraction, event detection, local binary pattern, low-power vision sensors, motion detection</subfield>
  </datafield>
  <controlfield tag="005">20201001002650.0</controlfield>
  <controlfield tag="001">4059748</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">FBK</subfield>
    <subfield code="0">(orcid)0000-0003-0742-4642</subfield>
    <subfield code="a">Gottardi, Massimo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">FBK</subfield>
    <subfield code="0">(orcid)0000-0001-7961-0212</subfield>
    <subfield code="a">Lecca, Michela</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">FBK</subfield>
    <subfield code="0">(orcid)0000-0001-8777-1593</subfield>
    <subfield code="a">Perenzoni, Matteo</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6905111</subfield>
    <subfield code="z">md5:f0c560848717d099d5081ffdaa39c611</subfield>
    <subfield code="u">https://zenodo.org/record/4059748/files/Low-Power_VGA.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-07-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4059748</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Solid-State Circuits</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">FBK</subfield>
    <subfield code="a">Zou, Yu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Low-Power VGA Vision Sensor with Embedded Event Detection for Outdoor Edge Applications</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">653355</subfield>
    <subfield code="a">FOREnsic evidence gathering autonomous seNSOR</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We report on a low-power VGA vision sensor embedding event-detection capabilities targeted to battery-powered vision processing at the edge. The sensor relies on an always-on double-threshold dynamic background subtraction (DT-DBS) algorithm. The resulting motion bitmap is de-noised, projected along xy-axes of the array of pixels and filtered to robustly detect moving targets even in noisy outdoor scenarios. The chip operates in motion detection (MD), applied on a QQVGA sub-sampled image, looking for anomalous motion in the scene at 344 &amp;mu;W, and in imaging mode (IM), delivering full-resolution gray-scale images with associated local binary pattern (LBP) coding and motion bitmaps at 8 frames/s and 1.35 mW. The 4-&amp;mu;m pixel vision sensor is manufactured in a 110-nm 1P4M CMOS and occupies 25.4 mm&amp;sup2;.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/JSSC.2020.3005759</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
181
212
views
downloads
Views 181
Downloads 212
Data volume 1.5 GB
Unique views 162
Unique downloads 184

Share

Cite as