Journal article Open Access

Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods

Diunugala , Hemantha Premakumara; Mombeuil, Claudel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">foreign tourist arrivals</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">winter's exponential smoothing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ARIMA</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">simple recurrent neural network</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sri Lanka</subfield>
  </datafield>
  <controlfield tag="005">20200929002651.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">SUBMITTED: DEC 2019, REVISION SUBMITTED: APR 2020, 2nd REVISION SUBMITTED: MAY 2020, ACCEPTED: JUL 2020, REFEREED ANONYMOUSLY, PUBLISHED ONLINE: 30 OCT 2020</subfield>
  </datafield>
  <controlfield tag="001">4055960</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Beijing Institute of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-2855-9319</subfield>
    <subfield code="a">Mombeuil, Claudel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2423514</subfield>
    <subfield code="z">md5:95414c9738a8ec24ac54eeafa2d4c69a</subfield>
    <subfield code="u">https://zenodo.org/record/4055960/files/6-3-1.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4055960</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">3-13</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">Journal of Tourism, Heritage &amp; Services Marketing</subfield>
    <subfield code="v">6</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Beijing Institute of Technology</subfield>
    <subfield code="0">(orcid)0000-0002-5011-8221</subfield>
    <subfield code="a">Diunugala , Hemantha Premakumara</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;&lt;em&gt;Purpose&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: This study compares three different methods to predict foreign tourist arrivals (FTAs) to Sri Lanka from top-ten countries and also attempts to find the best-fitted forecasting model for each country using five model performance evaluation criteria.&lt;/em&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;&lt;em&gt;Methods&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: This study employs two different univariate-time-series approaches and one Artificial Intelligence (AI) approach to develop models that best explain the tourist arrivals to Sri Lanka from the top-ten tourist generating countries. The univariate-time series approach contains two main types of statistical models, namely Deterministic Models and Stochastic Models. &lt;/em&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;&lt;em&gt;Results&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: The results show that Winter&amp;rsquo;s exponential smoothing and ARIMA are the best methods to forecast tourist arrivals to Sri Lanka. Furthermore, the results show that the accuracy of the best forecasting model based on MAPE criteria for the models of India, China, Germany, Russia, and Australia fall between 5 to 9 percent, whereas the accuracy levels of models for the UK, France, USA, Japan, and the Maldives fall between 10 to 15 percent. &lt;/em&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;&lt;em&gt;Implications&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: The overall results of this study provide valuable insights into tourism management and policy development for Sri Lanka. Successful forecasting of FTAs for each market source provide a practical planning tool to destination decision-makers.&lt;/em&gt;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">2529-1947</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4055959</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4055960</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
100
63
views
downloads
All versions This version
Views 100100
Downloads 6363
Data volume 152.7 MB152.7 MB
Unique views 9191
Unique downloads 6060

Share

Cite as