Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Journal article Open Access

Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods

Diunugala , Hemantha Premakumara; Mombeuil, Claudel


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.4055960">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.4055960</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.4055960"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-5011-8221">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-5011-8221</dct:identifier>
        <foaf:name>Diunugala , Hemantha Premakumara</foaf:name>
        <foaf:givenName>Hemantha Premakumara</foaf:givenName>
        <foaf:familyName>Diunugala</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Beijing Institute of Technology</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-2855-9319">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0003-2855-9319</dct:identifier>
        <foaf:name>Mombeuil, Claudel</foaf:name>
        <foaf:givenName>Claudel</foaf:givenName>
        <foaf:familyName>Mombeuil</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Beijing Institute of Technology</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Modeling and predicting foreign tourist arrivals to Sri Lanka: A comparison of three different methods</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>foreign tourist arrivals</dcat:keyword>
    <dcat:keyword>winter's exponential smoothing</dcat:keyword>
    <dcat:keyword>ARIMA</dcat:keyword>
    <dcat:keyword>simple recurrent neural network</dcat:keyword>
    <dcat:keyword>Sri Lanka</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-10-30</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/4055960"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4055960</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isPartOf rdf:resource="http://issn.org/resource/ISSN/2529-1947"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.4055959"/>
    <dct:description>&lt;p&gt;&lt;strong&gt;Abstract:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;&lt;strong&gt;&lt;em&gt;Purpose&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: This study compares three different methods to predict foreign tourist arrivals (FTAs) to Sri Lanka from top-ten countries and also attempts to find the best-fitted forecasting model for each country using five model performance evaluation criteria.&lt;/em&gt;&lt;/p&gt; &lt;p&gt;&lt;strong&gt;&lt;em&gt;Methods&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: This study employs two different univariate-time-series approaches and one Artificial Intelligence (AI) approach to develop models that best explain the tourist arrivals to Sri Lanka from the top-ten tourist generating countries. The univariate-time series approach contains two main types of statistical models, namely Deterministic Models and Stochastic Models. &lt;/em&gt;&lt;/p&gt; &lt;p&gt;&lt;strong&gt;&lt;em&gt;Results&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: The results show that Winter&amp;rsquo;s exponential smoothing and ARIMA are the best methods to forecast tourist arrivals to Sri Lanka. Furthermore, the results show that the accuracy of the best forecasting model based on MAPE criteria for the models of India, China, Germany, Russia, and Australia fall between 5 to 9 percent, whereas the accuracy levels of models for the UK, France, USA, Japan, and the Maldives fall between 10 to 15 percent. &lt;/em&gt;&lt;/p&gt; &lt;p&gt;&lt;strong&gt;&lt;em&gt;Implications&lt;/em&gt;&lt;/strong&gt;&lt;em&gt;: The overall results of this study provide valuable insights into tourism management and policy development for Sri Lanka. Successful forecasting of FTAs for each market source provide a practical planning tool to destination decision-makers.&lt;/em&gt;&lt;/p&gt;</dct:description>
    <dct:description>SUBMITTED: DEC 2019, REVISION SUBMITTED: APR 2020, 2nd REVISION SUBMITTED: MAY 2020, ACCEPTED: JUL 2020, REFEREED ANONYMOUSLY, PUBLISHED ONLINE: 30 OCT 2020</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4055960"/>
        <dcat:byteSize>2423514</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4055960/files/6-3-1.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
100
63
views
downloads
All versions This version
Views 100100
Downloads 6363
Data volume 152.7 MB152.7 MB
Unique views 9191
Unique downloads 6060

Share

Cite as