Software Open Access

hal9001: Scalable highly adaptive lasso regression in R

Hejazi, Nima S; Coyle, Jeremy R; van der Laan, Mark J


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">semiparametric theory</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">nonparametric estimation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">causal inference</subfield>
  </datafield>
  <controlfield tag="005">20200926122653.0</controlfield>
  <controlfield tag="001">4050561</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of California, Berkeley</subfield>
    <subfield code="0">(orcid)0000-0002-9874-6649</subfield>
    <subfield code="a">Coyle, Jeremy R</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of California, Berkeley</subfield>
    <subfield code="0">(orcid)0000-0003-1432-5511</subfield>
    <subfield code="a">van der Laan, Mark J</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">60887</subfield>
    <subfield code="z">md5:722185cfd218b6c61b7e74b3e72fe917</subfield>
    <subfield code="u">https://zenodo.org/record/4050561/files/hal9001_0.2.7.tar.gz</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-09-25</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o">oai:zenodo.org:4050561</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of California, Berkeley</subfield>
    <subfield code="0">(orcid)0000-0002-7127-2789</subfield>
    <subfield code="a">Hejazi, Nima S</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">hal9001: Scalable highly adaptive lasso regression in R</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://opensource.org/licenses/GPL-3.0</subfield>
    <subfield code="a">GNU General Public License v3.0 only</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A scalable implementation of the highly adaptive lasso algorithm,including routines for constructing sparse matrices of basis functions of the observed data, as well as a custom implementation of Lasso regression tailored to enhance efficiency when the matrix of predictors is composed exclusively of indicator basis functions. For ease of use and increased flexibility, the Lasso fitting routines may invoke code from the glmnet package optionally. This version of the R package corresponds to the software paper in the &lt;em&gt;Journal of Open Source Software&lt;/em&gt;.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3558313</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4050561</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
201
17
views
downloads
All versions This version
Views 20166
Downloads 176
Data volume 5.2 MB365.3 kB
Unique views 15961
Unique downloads 156

Share

Cite as