Preprint Open Access

Big Picture for Everyone: The relationship between the equation model and base vectors for mapping human semantic space.

Mindey


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4039727</identifier>
  <creators>
    <creator>
      <creatorName>Mindey</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Big Picture for Everyone: The relationship between the equation model and base vectors for mapping human semantic space.</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject subjectScheme="url">https://en.wikipedia.org/wiki/Equation</subject>
    <subject subjectScheme="url">https://en.wikipedia.org/wiki/Semantics</subject>
    <subject subjectScheme="url">https://en.wikipedia.org/wiki/Embedding</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-09-20</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Preprint"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4039727</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4039726</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The paper introduces considerations about the categorical&amp;nbsp;relationship between the&amp;nbsp;functional equation model in mathematics and fundamental human question categories in philosophy and linguistics, thinking of them as semantic base vectors: &lt;em&gt;is there a semantic relationship between these basic human questions and the equation model, and if so, then what kind?&lt;/em&gt; We explore this question, and arrive at a qualitative categorical relationship, where broadly F is answered by questions &lt;em&gt;&amp;ldquo;What?&amp;rdquo;, &amp;ldquo;Where?&amp;rdquo;, &amp;ldquo;When?&amp;rdquo;&lt;/em&gt;, the X is answered by &lt;em&gt;&amp;ldquo;Who?&lt;/em&gt;&amp;rdquo; and &lt;em&gt;&amp;ldquo;How?&amp;rdquo;&lt;/em&gt;, and the Y is answered by the question &lt;em&gt;&amp;ldquo;Why?&amp;rdquo;&lt;/em&gt;. The result, while simple, may help us to define the base vectors for mapping human semantic space, and to create intuitions on how to convert human perceptions&amp;nbsp;and conceptions&amp;nbsp;into formal mathematical problems.&lt;/p&gt;

&lt;p&gt;The result may be useful for obtaining and retaining simple human-understandability of world&amp;rsquo;s systems and processes; transforming semantic spaces to forms more conducive to human understanding; embedding sets of databases into the space of the semantic vectors by labeling tables, collections and entities with the question categories; creating database indices optimal for human interpretation and application of the equation model for information retrieval, machine learning, machine reasoning and search for actions to achieve goals.&lt;/p&gt;</description>
  </descriptions>
</resource>
52
28
views
downloads
All versions This version
Views 5252
Downloads 2828
Data volume 8.3 MB8.3 MB
Unique views 4141
Unique downloads 2727

Share

Cite as