Preprint Open Access

Big Picture for Everyone: The relationship between the equation model and base vectors for mapping human semantic space.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.4039727</identifier>
    <title>Big Picture for Everyone: The relationship between the equation model and base vectors for mapping human semantic space.</title>
    <subject subjectScheme="url"></subject>
    <subject subjectScheme="url"></subject>
    <subject subjectScheme="url"></subject>
    <date dateType="Issued">2020-09-20</date>
  <resourceType resourceTypeGeneral="Preprint"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4039726</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;The paper introduces considerations about the categorical&amp;nbsp;relationship between the&amp;nbsp;functional equation model in mathematics and fundamental human question categories in philosophy and linguistics, thinking of them as semantic base vectors: &lt;em&gt;is there a semantic relationship between these basic human questions and the equation model, and if so, then what kind?&lt;/em&gt; We explore this question, and arrive at a qualitative categorical relationship, where broadly F is answered by questions &lt;em&gt;&amp;ldquo;What?&amp;rdquo;, &amp;ldquo;Where?&amp;rdquo;, &amp;ldquo;When?&amp;rdquo;&lt;/em&gt;, the X is answered by &lt;em&gt;&amp;ldquo;Who?&lt;/em&gt;&amp;rdquo; and &lt;em&gt;&amp;ldquo;How?&amp;rdquo;&lt;/em&gt;, and the Y is answered by the question &lt;em&gt;&amp;ldquo;Why?&amp;rdquo;&lt;/em&gt;. The result, while simple, may help us to define the base vectors for mapping human semantic space, and to create intuitions on how to convert human perceptions&amp;nbsp;and conceptions&amp;nbsp;into formal mathematical problems.&lt;/p&gt;

&lt;p&gt;The result may be useful for obtaining and retaining simple human-understandability of world&amp;rsquo;s systems and processes; transforming semantic spaces to forms more conducive to human understanding; embedding sets of databases into the space of the semantic vectors by labeling tables, collections and entities with the question categories; creating database indices optimal for human interpretation and application of the equation model for information retrieval, machine learning, machine reasoning and search for actions to achieve goals.&lt;/p&gt;</description>
All versions This version
Views 5252
Downloads 2828
Data volume 8.3 MB8.3 MB
Unique views 4141
Unique downloads 2727


Cite as