Preprint Open Access

Big Picture for Everyone: The relationship between the equation model and base vectors for mapping human semantic space.


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="" xmlns:adms="" xmlns:dc="" xmlns:dct="" xmlns:dctype="" xmlns:dcat="" xmlns:duv="" xmlns:foaf="" xmlns:frapo="" xmlns:geo="" xmlns:gsp="" xmlns:locn="" xmlns:org="" xmlns:owl="" xmlns:prov="" xmlns:rdfs="" xmlns:schema="" xmlns:skos="" xmlns:vcard="" xmlns:wdrs="">
  <rdf:Description rdf:about="">
    <dct:identifier rdf:datatype=""></dct:identifier>
    <foaf:page rdf:resource=""/>
        <rdf:type rdf:resource=""/>
    <dct:title>Big Picture for Everyone: The relationship between the equation model and base vectors for mapping human semantic space.</dct:title>
    <dct:issued rdf:datatype="">2020</dct:issued>
    <dct:subject rdf:resource=""/>
    <dct:subject rdf:resource=""/>
    <dct:subject rdf:resource=""/>
    <dct:issued rdf:datatype="">2020-09-20</dct:issued>
    <dct:language rdf:resource=""/>
    <owl:sameAs rdf:resource=""/>
        <skos:notation rdf:datatype=""></skos:notation>
    <dct:isVersionOf rdf:resource=""/>
    <dct:description>&lt;p&gt;The paper introduces considerations about the categorical&amp;nbsp;relationship between the&amp;nbsp;functional equation model in mathematics and fundamental human question categories in philosophy and linguistics, thinking of them as semantic base vectors: &lt;em&gt;is there a semantic relationship between these basic human questions and the equation model, and if so, then what kind?&lt;/em&gt; We explore this question, and arrive at a qualitative categorical relationship, where broadly F is answered by questions &lt;em&gt;&amp;ldquo;What?&amp;rdquo;, &amp;ldquo;Where?&amp;rdquo;, &amp;ldquo;When?&amp;rdquo;&lt;/em&gt;, the X is answered by &lt;em&gt;&amp;ldquo;Who?&lt;/em&gt;&amp;rdquo; and &lt;em&gt;&amp;ldquo;How?&amp;rdquo;&lt;/em&gt;, and the Y is answered by the question &lt;em&gt;&amp;ldquo;Why?&amp;rdquo;&lt;/em&gt;. The result, while simple, may help us to define the base vectors for mapping human semantic space, and to create intuitions on how to convert human perceptions&amp;nbsp;and conceptions&amp;nbsp;into formal mathematical problems.&lt;/p&gt; &lt;p&gt;The result may be useful for obtaining and retaining simple human-understandability of world&amp;rsquo;s systems and processes; transforming semantic spaces to forms more conducive to human understanding; embedding sets of databases into the space of the semantic vectors by labeling tables, collections and entities with the question categories; creating database indices optimal for human interpretation and application of the equation model for information retrieval, machine learning, machine reasoning and search for actions to achieve goals.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource=""/>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
    <dct:license rdf:resource=""/>
        <dcat:accessURL rdf:resource=""></dcat:accessURL>
        <dcat:downloadURL rdf:resource=""></dcat:downloadURL>
All versions This version
Views 5252
Downloads 2828
Data volume 8.3 MB8.3 MB
Unique views 4141
Unique downloads 2727


Cite as