
Dynamic Programming

10.5281/zenodo.4037386

Wedding Shop Problem 1

Greedy Algorithm to Serve Your First Customer 3

Brute-Force Algorithm to Save the Falling Pants 4

Dynamic Programming Algorithm to Remove Overlapping Steps 7
Solution to Subproblem Is Part of Solution to Overall Problem 7
Overlapping Subproblems 8

Dynamic Programming (DP) Key Concepts 10
Two Prerequisites 10
States 10
Transitions 11
Top-Down Approach With Memo Table 11
Bottom-Up Approach With ... 11
DP to Optimize Fibonacci Problem 12

"You can never be overdressed or
overeducated."​ — Oscar Wilde

Wedding Shop Problem

With your AI educational background, you are devoted to launching an
entrepreneurial e-commerce , a wedding shop! Your system will recommend the combination of
the garments within customers' budget and maximize your sales price.

Tuxedo Catalogue

Vest Catalogue

Pants Catalogue

If you dare to recommend this short to groom, well, I guess he will dare to wear it!

Greedy Algorithm to Serve Your First Customer

First customer browsing your website now!

Alright! As the store owner, you definitely want to maximize your profit by recommending
customers the most expensive combination within their budget!

Tuxedo: 60, 100, ​200
Vest: 30, 50, ​100
Pants: ​60​, 80, 200

Pick the most expensive tuxedo ($200)!
Pick the most expensive vest ($100)!
With the remaining budget $60 ($360 - $200 - $100), you will just pick the pants that fit this
budget!

You’re darn right. This is indeed an algorithm - Greedy Algorithm!

What if the prices are different now?

Tuxedo: 30, 100, ​150
Vest: 30, 70, ​150
Pants: 40, ​50​, 150

Pick the most expensive tuxedo ($150)!
Pick the most expensive vest ($150)!
With the remaining $60 ($360 - $150 - $150), you will just pick the pants ($50) that fit this
budget!

Brute-Force Algorithm to Save the Falling Pants
Will the Greedy Algorithm always work?

What if the customer only has $320 budget instead of $360?

Tuxedo: 30, 100, ​150
Vest: 30, 70, ​150
Pants: 40, 50, 150

Pick the most expensive tuxedo ($150)!
Pick the most expensive vest ($150)!
With the remaining $20 ($320 - $150 - $150), none of the pants fit this budget!

Ouch!

How to solve this problem?

(Credit to the image source: https://www.pngfuel.com/free-png/ntfvt/download)

Let us try each and every combination of the garments and see which combination has the
highest price within budget $320!

Tuxedo T1: $30 T2: $100 T3: 150

Vest V1: $30 V2: $70 V3: $150

Pants P1: $40 P2: $50 P3: $150

Compute the following combined prices and select the highest within $320 budget.

T1 Selected T2 Selected T3 Selected

V1 - P1
V1 - P2
V1 - P3

V2 - P1
V2 - P2
V2 - P3

V3 - P1
V3 - P2
V3 - P3

V1 - P1
V1 - P2
V1 - P3

V2 - P1
V2 - P2
V2 - P3

V3 - P1
V3 - P2
V3 - P3

V1 - P1
V1 - P2
V1 - P3

V2 - P1
V2 - P2
V2 - P3

V3 - P1
V3 - P2
V3 - P3

Among the total of 27 combinations, the price of T2 - V2 - P3 combination matches the budget
$320.

Let us generalize this solution:

N kinds of tuxedo, N kinds of vest and N kinds of pants require N^3 combinations. If you have a
total of M types of garments (including more types like shirt, socks, etc)? There will be N^M
combinations.

This is called ​Brute-Force Algorithm​. Brute-Force saves the falling pants!
But checking all the combinations is a lengthy process. It takes a lot of time and computing
power!

[add the story of the origin/history of brute-force algorithm]

Better way to solve the problem

Dynamic Programming Algorithm to Remove Overlapping Steps

Solution to Subproblem Is Part of Solution to Overall Problem

On further look at this wedding shop example, if we select Ti for Tuxedo, in order for
our final selection to be optimal, our subproblem, which is the choice of Vest and

Pants, must also be optimal for a reduced budget (total budget - price of Ti). And hence our
sub-subproblem, which is the choice of Pants, must also be optimal for the further reduced
budget (total budget - price of Ti - price of Vj).

In other words, ​the solution to the subproblem is part of the solution to the overall
problem.

Overlapping Subproblems

On much further look at the choices, there are some overlapping
subproblems. For example, if T1-V3 selected or T3-V1 selected, they leave
the same remaining budget $140 ($320 - $30 - $150) to make the optimal

choice for P.

Tuxedo T1: $30 T2: $100 T3: 150

Vest V1: $30 V2: $70 V3: $150

Pants P1: $40 P2: $50 P3: $150

With the increasing volume of garment variety and types, total of N^M combinations, ​there will
be many more overlapping subproblems​.

What if we memorize the optimal choice of V given the budget of $140? Then we do not have to
re-compute it later.

In other words, ​we can store the results of subproblems to avoid computing the same
results again.

Remember, one of the computer’s strengths is the Big Brain, a.k.a. better memory than humans.

Genius! This is called ​Dynamic Programming​ algorithm!

Dynamic Programming (DP) Key Concepts
Dynamic Programming algorithm solves a complex problem by breaking it into
subproblems and stores the results of subproblems to avoid computing the same
results again.

Two Prerequisites

Two prerequisites for DP to be applicable

1. This problem has optimal subproblem

The solution for the subproblem is part of the solution of the original problem.

 2. This problem has overlapping subproblems

This is the key characteristic of DP! The total computation of this problem is not as big as the
N^M combinations in brute-force algorithm because many subproblems are overlapping

States

The distinct subproblems are called the states.

Transitions

in DP terminology

Top-Down Approach With Memo Table

Workflow

1. Initialize​ ​a DP ‘memo’ table with dummy values that are not used in the problem, e.g. ‘-1’. The
DP table should have dimensions corresponding to the problem states.

2. At the start of the recursive function, check if this state has been computed before.

(a) If it has, simply return the value from the DP memo table, O(1). (This the origin of the
term ‘memoization’.)

(b) If it has not been computed, perform the computation as per normal (only once) and
then store the computed value in the DP memo table so that further calls to this
sub-problem (state) return immediately.

If it has M distinct states, then it requires O(M) memory space. If computing one state (the
complexity of the DP transition) requires O(k) steps, then the overall time complexity is O(kM).

Bottom-Up Approach With ...

This is actually the ‘true form’ of DP as DP was originally known as the ‘tabular method’
(computation technique involving a table). The basic steps to build bottom-up DP solution are as
follows:

1. Determine the required set of parameters that uniquely describe the problem (the state).
This step is similar to what we have discussed in the top-down DP earlier.

2. If there are N parameters required to represent the states, prepare an N dimensional DP
table, with one entry per state. This is equivalent to the memo table in top-down DP.
However, there are differences. In bottom-up DP, we only need to initialize some cells of
the DP table with known initial values (the base cases). Whereas in top- down DP, we
initialize the memo table completely with dummy values (usually -1) to indicate that we
have not yet computed the values.

3. Now, with the base-case cells/states in the DP table already filled, determine the
cells/states that can be filled next (the transitions). Repeat this process until the DP table
is complete. For the bottom-up DP, this part is usually accomplished through iterations,
using loops.

Reference

https://www.geeksforgeeks.org/overlapping-subproblems-property-in-dynamic-programming-dp-
1/#:~:text=Overlapping%20Subproblems%20Property%20in%20Dynamic%20Programming%20
%7C%20DP%2D1,-Last%20Updated%3A%2003&text=Dynamic%20Programming%20is%20an
%20algorithmic,computing%20the%20same%20results%20again​.

Image source:

https://www.clipartmax.com/

https://www.geeksforgeeks.org/overlapping-subproblems-property-in-dynamic-programming-dp-1/#:~:text=Overlapping%20Subproblems%20Property%20in%20Dynamic%20Programming%20%7C%20DP%2D1,-Last%20Updated%3A%2003&text=Dynamic%20Programming%20is%20an%20algorithmic,computing%20the%20same%20results%20again
https://www.geeksforgeeks.org/overlapping-subproblems-property-in-dynamic-programming-dp-1/#:~:text=Overlapping%20Subproblems%20Property%20in%20Dynamic%20Programming%20%7C%20DP%2D1,-Last%20Updated%3A%2003&text=Dynamic%20Programming%20is%20an%20algorithmic,computing%20the%20same%20results%20again
https://www.geeksforgeeks.org/overlapping-subproblems-property-in-dynamic-programming-dp-1/#:~:text=Overlapping%20Subproblems%20Property%20in%20Dynamic%20Programming%20%7C%20DP%2D1,-Last%20Updated%3A%2003&text=Dynamic%20Programming%20is%20an%20algorithmic,computing%20the%20same%20results%20again
https://www.geeksforgeeks.org/overlapping-subproblems-property-in-dynamic-programming-dp-1/#:~:text=Overlapping%20Subproblems%20Property%20in%20Dynamic%20Programming%20%7C%20DP%2D1,-Last%20Updated%3A%2003&text=Dynamic%20Programming%20is%20an%20algorithmic,computing%20the%20same%20results%20again
https://www.clipartmax.com/

DP to Optimize Fibonacci Problem

