Conference paper Open Access
Brody, Shaked; Alon, Uri; Yahav, Eran
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.4036303"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.4036303</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.4036303"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Brody, Shaked</foaf:name> <foaf:givenName>Shaked</foaf:givenName> <foaf:familyName>Brody</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Technion</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Alon, Uri</foaf:name> <foaf:givenName>Uri</foaf:givenName> <foaf:familyName>Alon</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Technion</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Yahav, Eran</foaf:name> <foaf:givenName>Eran</foaf:givenName> <foaf:familyName>Yahav</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>Technion</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>A Structural Model for Contextual Code Changes</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued> <dcat:keyword>Programming Languages</dcat:keyword> <dcat:keyword>Machine Learning</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-09-18</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/4036303"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4036303</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.4036302"/> <dct:description><p>We address the problem of predicting edit completions based on a learned model that was trained on past edits.<br> Given a code snippet that is partially edited, our goal is to predict a completion of the edit for the rest of the<br> snippet. We refer to this task as the EditCompletion&nbsp;task and present a novel approach for tackling it. The<br> main idea is to directly represent structural edits. This allows us to model the likelihood of the edit itself, rather<br> than learning the likelihood of the edited code. We represent an edit operation as a path in the program&rsquo;s Abstract<br> Syntax Tree (AST), originating from the source of the edit to the target of the edit. Using this representation, we<br> present a powerful and lightweight neural model for the EditCompletion&nbsp;task.</p> <p><br> We conduct a thorough evaluation, comparing our approach to a variety of representation and modeling<br> approaches that are driven by multiple strong models such as LSTMs, Transformers, and neural CRFs. Our<br> experiments show that our model achieves 28% relative gain over state-of-the-art sequential models and 2&times;<br> higher accuracy than syntactic models that learn to generate the edited code instead of modeling the edits<br> directly. We make our code, dataset, and trained models publicly available.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4036303"/> <dcat:byteSize>97734743</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4036303/files/A-Structural-Model-for-Contextual-Code-Changes-Artifact.zip"/> <dcat:mediaType>application/zip</dcat:mediaType> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4036303"/> <dcat:byteSize>1084</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4036303/files/LICENSE"/> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4036303"/> <dcat:byteSize>15076</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4036303/files/README.md"/> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 73 | 73 |
Downloads | 16 | 16 |
Data volume | 488.8 MB | 488.8 MB |
Unique views | 70 | 70 |
Unique downloads | 13 | 13 |