Journal article Open Access

ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid

Radoglou Grammatikis, Panagiotis; Sarigiannidis, Panagiotis; Efstathopoulos, Georgios; Panaousis, Emmanouil


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">cybersecurity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Intrusion Detection System</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Modbus</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">SCADA</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Smart Grid</subfield>
  </datafield>
  <controlfield tag="005">20200923002651.0</controlfield>
  <controlfield tag="001">4036224</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece</subfield>
    <subfield code="0">(orcid)0000-0001-6042-0355</subfield>
    <subfield code="a">Sarigiannidis, Panagiotis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">0INF, Imperial Offices, London E6 2JG, UK</subfield>
    <subfield code="a">Efstathopoulos, Georgios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computing and Information Systems, University of Greenwich, Old Royal Naval College, London SE10 9LS, UK</subfield>
    <subfield code="a">Panaousis, Emmanouil</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1120633</subfield>
    <subfield code="z">md5:e319d2d0180ea67f0bab09f479171885</subfield>
    <subfield code="u">https://zenodo.org/record/4036224/files/[21] ARIES A Novel Multivariate Intrusion Detection System for Smart Grid.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-09-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_spear_project</subfield>
    <subfield code="o">oai:zenodo.org:4036224</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece</subfield>
    <subfield code="0">(orcid)0000-0003-1605-9413</subfield>
    <subfield code="a">Radoglou Grammatikis, Panagiotis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_spear_project</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">787011</subfield>
    <subfield code="a">SPEAR: Secure and PrivatE smArt gRid</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The advent of the Smart Grid (SG) raises severe cybersecurity risks that can lead to devastating consequences. In this paper, we present a novel anomaly-based Intrusion DetectionSystem (IDS), called ARIES (smArt gRid Intrusion dEtection System), which is capable of protecting efficiently SG communications. ARIES combines three detection layers that are devoted to recognising possible cyberattacks and anomalies against (a) network flows, (b) Modbus/Transmission Control Protocol (TCP) packets and (c) operational data. Each detection layer relies on a Machine Learning (ML) model trained using data originating from a power plant. In particular, the first layer (network flow-based detection) performs a supervised multiclass classification, recognising Denial of Service (DoS), brute force attacks, port scanning attacks and bots. The second layer (packet-based detection) detects possible anomalies related to the Modbus packets, while the third layer (operational data based detection) monitors and identifies anomalies upon operational data (i.e., time series electricity measurements). By emphasising on the third layer, the ARIES Generative Adversarial Network (ARIES GAN) with novel error minimisation functions was developed, considering mainly the reconstruction difference. Moreover, a novel reformed conditional input was suggested, consisting of random noise and the signal features at any given time instance. Based on the evaluation analysis, the proposed GAN network overcomes the efficacy of conventional ML methods in terms of Accuracy and the F1 score.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3390/s20185305</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
141
68
views
downloads
Views 141
Downloads 68
Data volume 76.2 MB
Unique views 134
Unique downloads 63

Share

Cite as