Project deliverable Open Access

D1.1 Life Sciences Use Case: Initial Requirements and Scenario Definitions

Project consortium members


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20201009122654.0</controlfield>
  <controlfield tag="001">4034013</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1527481</subfield>
    <subfield code="z">md5:6ab0c8a644d09d96efef9a9173d24db2</subfield>
    <subfield code="u">https://zenodo.org/record/4034013/files/D1.1 Life Sciences Use Case Initial Requirements and Scenario Definitions.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-03-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-infore-project</subfield>
    <subfield code="o">oai:zenodo.org:4034013</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Project consortium members</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">D1.1 Life Sciences Use Case: Initial Requirements and Scenario Definitions</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-infore-project</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825070</subfield>
    <subfield code="a">Interactive Extreme-Scale Analytics and Forecasting</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This deliverable describes the requirements and scenario definitions of the biological use case in accordance with expert users&amp;rsquo; questionnaires. By using a Boolean model of carcinoma cell lines (AGS) and a lattice-free physics-based cell simulator for 3D multicellular modelling, PhysiBoSS, we aim to replicate experimental data of growth profiles of cancer cells treated with different drug regimes. The ultimate goal of this use case is to provide a &lt;em&gt;&amp;quot;virtual laboratory&amp;quot; &lt;/em&gt;for studying cancer growth and evolution by using multi-scale models of tumour systems. The development of such a framework will facilitate the design, test, and optimization of cancer treatments based on combinations of different drugs and dose scheduling strategies.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;In our simulations, we will explore two alternative geometries for cell arrangement: i) one-cell-thick 2D monolayers, representing cells growing in a plate such as those observed in &lt;em&gt;in-vitro &lt;/em&gt;cell cultures; and ii) 3D spheroids, representing cells growing in three-dimensional space, an arrangement that resembles cancer cells growing &lt;em&gt;in-vivo&lt;/em&gt;. These simulations will be scaled up by several orders of magnitude using the Barcelona Supercomputing Center (BSC) MareNostrum4 allowing the incorporation of forecasting techniques for various events of interest. Moreover, interactive learning techniques will be used to assist the calibration of such &lt;em&gt;in-silico &lt;/em&gt;models.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;In particular, we aim to scale up simulations of cancer cell 3D spheroids from 5,000 up to 500,000 cells using high-performance computing. This scenario will allow the design of different set-ups that tally cancer tumour growth conditions with increased number of cells, altered microenvironmental physical properties, different cell types, as well as to study the interaction between cancer cells and the immune system. In addition, this will allow the consideration of different simulations&amp;rsquo; set-ups beyond cancer tumour growth such as &lt;em&gt;in-vitro &lt;/em&gt;streak experiments, microfluidic designs, among others.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4034012</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4034013</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">deliverable</subfield>
  </datafield>
</record>
31
19
views
downloads
All versions This version
Views 3131
Downloads 1919
Data volume 29.0 MB29.0 MB
Unique views 2222
Unique downloads 1414

Share

Cite as