Software Open Access

Supplementary materials for "RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering"

Klus, Lucie; Quezada-Gaibor, Darwin; Torres-Sospedra, Joaquın


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>The file includes source code for the data size-reduction method described in &quot;RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering&quot; (see https://ieeexplore.ieee.org/document/9222458 or https://zenodo.org/record/4091706#.X4irmWgzZPY), example dataset, and readme file with all necessary information.</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Tampere University, Universitat Jaume I", 
      "@id": "https://orcid.org/0000-0003-0354-9421", 
      "@type": "Person", 
      "name": "Klus, Lucie"
    }, 
    {
      "affiliation": "Tampere University, Universitat Jaume I", 
      "@id": "https://orcid.org/0000-0002-8064-9955", 
      "@type": "Person", 
      "name": "Quezada-Gaibor, Darwin"
    }, 
    {
      "affiliation": "Universitat Jaume I, UBIK Geospatial Solutions S.L.", 
      "@id": "https://orcid.org/0000-0002-2803-1402", 
      "@type": "Person", 
      "name": "Torres-Sospedra, Joaqu\u0131n"
    }
  ], 
  "url": "https://zenodo.org/record/4026370", 
  "datePublished": "2020-09-01", 
  "version": "v1", 
  "keywords": [
    "clustering, compression ratio, data compression, fingerprinting, indoor positioning, k-means, k-nearest neighbors"
  ], 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.4026370", 
  "@id": "https://doi.org/10.5281/zenodo.4026370", 
  "@type": "SoftwareSourceCode", 
  "name": "Supplementary materials for \"RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering\""
}
27
2
views
downloads
All versions This version
Views 2727
Downloads 22
Data volume 116.2 kB116.2 kB
Unique views 2424
Unique downloads 22

Share

Cite as