Software Open Access

Supplementary materials for "RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering"

Klus, Lucie; Quezada-Gaibor, Darwin; Torres-Sospedra, Joaquın


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4026370</identifier>
  <creators>
    <creator>
      <creatorName>Klus, Lucie</creatorName>
      <givenName>Lucie</givenName>
      <familyName>Klus</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0354-9421</nameIdentifier>
      <affiliation>Tampere University, Universitat Jaume I</affiliation>
    </creator>
    <creator>
      <creatorName>Quezada-Gaibor, Darwin</creatorName>
      <givenName>Darwin</givenName>
      <familyName>Quezada-Gaibor</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8064-9955</nameIdentifier>
      <affiliation>Tampere University, Universitat Jaume I</affiliation>
    </creator>
    <creator>
      <creatorName>Torres-Sospedra, Joaquın</creatorName>
      <givenName>Joaquın</givenName>
      <familyName>Torres-Sospedra</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2803-1402</nameIdentifier>
      <affiliation>Universitat Jaume I, UBIK Geospatial Solutions S.L.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Supplementary materials for "RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering"</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>clustering, compression ratio, data compression, fingerprinting, indoor positioning, k-means, k-nearest neighbors</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-09-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4026370</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4026369</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/a_wear</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/tau_wireless</relatedIdentifier>
  </relatedIdentifiers>
  <version>v1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The file includes source code for the data size-reduction method described in &amp;quot;RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering&amp;quot; (see https://ieeexplore.ieee.org/document/9222458 or https://zenodo.org/record/4091706#.X4irmWgzZPY), example dataset, and readme file with all necessary information.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/813278/">813278</awardNumber>
      <awardTitle>A network for dynamic WEarable Applications with pRivacy constraints</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
27
2
views
downloads
All versions This version
Views 2727
Downloads 22
Data volume 116.2 kB116.2 kB
Unique views 2424
Unique downloads 22

Share

Cite as