Presentation Open Access

FAIR Computational Workflows

Sarah COHEN-BOULAKIA


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4025295</identifier>
  <creators>
    <creator>
      <creatorName>Sarah COHEN-BOULAKIA</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7439-1441</nameIdentifier>
      <affiliation>Université Paris-Sud</affiliation>
    </creator>
  </creators>
  <titles>
    <title>FAIR Computational Workflows</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-09-02</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Presentation</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4025295</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo" resourceTypeGeneral="JournalArticle">10.1162/dint_a_00033</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites" resourceTypeGeneral="JournalArticle">10.1038/sdata.2016.18</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4025294</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Computational workflows describe the complex multi-step methods that are used for data collection, data preparation, analytics, predictive modelling, and simulation that lead to new data products. They can inherently contribute to the &lt;strong&gt;FAIR data principles&lt;/strong&gt;: by processing data according to established metadata; by creating metadata themselves during the processing of data; and by tracking and recording data provenance. These properties aid data quality assessment and contribute to secondary data usage. Moreover, workflows are digital objects in their own right.&lt;/p&gt;

&lt;p&gt;This is a presentation of the paper &lt;a href="https://doi.org/10.1162/dint_a_00033"&gt;FAIR Computational Workflows&lt;/a&gt;, published in &lt;em&gt;Data Intelligence&lt;/em&gt;. The paper argues that FAIR principles for workflows need to address their specific nature in terms of their composition of executable software steps, their provenance, and their development.&lt;/p&gt;

&lt;p&gt;Presented at &lt;a href="https://eccb2020.info/programme-at-a-glance/"&gt;ECCB 2020&lt;/a&gt; Workshop on &lt;a href="http://FAIR Computational Workflows"&gt;FAIR Computational Workflows&lt;/a&gt;.&lt;/p&gt;</description>
  </descriptions>
</resource>
41
17
views
downloads
All versions This version
Views 4141
Downloads 1717
Data volume 31.8 MB31.8 MB
Unique views 3535
Unique downloads 1515

Share

Cite as