Journal article Open Access

How trapped particles interact with and sample superfluid vortex excitations

Umberto Giuriato, Giorgio Krstulovic, and Sergey Nazarenko

DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="" xmlns:adms="" xmlns:dc="" xmlns:dct="" xmlns:dctype="" xmlns:dcat="" xmlns:duv="" xmlns:foaf="" xmlns:frapo="" xmlns:geo="" xmlns:gsp="" xmlns:locn="" xmlns:org="" xmlns:owl="" xmlns:prov="" xmlns:rdfs="" xmlns:schema="" xmlns:skos="" xmlns:vcard="" xmlns:wdrs="">
  <rdf:Description rdf:about="">
    <dct:identifier rdf:datatype=""></dct:identifier>
    <foaf:page rdf:resource=""/>
        <rdf:type rdf:resource=""/>
        <foaf:name>Umberto Giuriato, Giorgio Krstulovic, and Sergey Nazarenko</foaf:name>
        <foaf:givenName>Giorgio Krstulovic, and Sergey Nazarenko</foaf:givenName>
        <foaf:familyName>Umberto Giuriato</foaf:familyName>
    <dct:title>How trapped particles interact with and sample superfluid vortex excitations</dct:title>
    <dct:issued rdf:datatype="">2020</dct:issued>
    <dcat:keyword>fluid-particle interactions, vortex flows, vortices in supoerfluids, Bose-Einstein condensates</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/823937/"/>
        <dct:identifier rdf:datatype="">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
    <dct:issued rdf:datatype="">2020-05-11</dct:issued>
    <dct:language rdf:resource=""/>
    <owl:sameAs rdf:resource=""/>
        <skos:notation rdf:datatype=""></skos:notation>
    <owl:sameAs rdf:resource=""/>
    <dct:description>&lt;p&gt;Particles have been used for more than a decade to visualize and study the dynamics of quantum vortices in superfluid helium. In this work we study how the dynamics of a collection of particles set inside a vortex reflects the motion of the vortex. We use a self-consistent model based on the Gross-Pitaevskii equation coupled with classical particle dynamics. We find that each particle oscillates with a natural frequency proportional to the number of vortices attached to it. We then study the dynamics of an array of particles trapped in a quantum vortex and use particle trajectories to measure the frequency spectrum of the vortex excitations. Surprisingly, due to the discreetness of the array, the vortex excitations measured by the particles exhibit bands, gaps, and Brillouin zones, analogous to the ones of electrons moving in crystals. We then establish a mathematical analogy where vortex excitations play the role of electrons and particles that of the potential barriers constituting the crystal. We find that the height of the effective potential barriers is proportional to the particle mass and the frequency of the incoming waves. We conclude that large-scale vortex excitations could be in principle directly measured by particles and novel physics could emerge from particle-vortex interaction.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource=""/>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
    <dct:license rdf:resource=""/>
        <dcat:accessURL rdf:resource=""></dcat:accessURL>
        <dcat:downloadURL rdf:resource=""></dcat:downloadURL>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/823937/">
    <dct:identifier rdf:datatype="">823937</dct:identifier>
    <dct:title>Hydrodynamical approach to light turbulence</dct:title>
        <dct:identifier rdf:datatype="">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
Views 14
Downloads 18
Data volume 56.7 MB
Unique views 13
Unique downloads 17


Cite as