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Abstract. In mathematics, the Riemann hypothesis is a conjecture that the
Riemann zeta function has its zeros only at the negative even integers and

complex numbers with real part 1
2

. Many consider it to be the most important
unsolved problem in pure mathematics. The Robin’s inequality consists in

σ(n) < eγ × n × ln lnn where σ(n) is the divisor function and γ ≈ 0.57721

is the Euler-Mascheroni constant. The Robin’s inequality is true for every
natural number n > 5040 if and only if the Riemann hypothesis is true. We

prove the Robin’s inequality is true for every natural number n > 5040. In

this way, we demonstrate the Riemann hypothesis is true.

1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta
function has its zeros only at the negative even integers and complex numbers with
real part 1

2 . Many consider it to be the most important unsolved problem in pure
mathematics [2]. It is of great interest in number theory because it implies results
about the distribution of prime numbers [2]. It was proposed by Bernhard Riemann
(1859), after whom it is named [2]. It is one of the seven Millennium Prize Problems
selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the
first correct solution [2].

The divisor function σ(n) for a natural number n is defined as the sum of the
powers of the divisors of n

σ(n) =
∑
k|n

k

where k | n means that the natural number k divides n [7]. In 1915, Ramanujan
proved that under the assumption of the Riemann hypothesis, the inequality

σ(n) < eγ × n× ln lnn

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler-Mascheroni constant
[2]. The largest known value that violates the inequality is n = 5040. In 1984, Guy
Robin proved that the inequality is true for all n > 5040 if and only if the Riemann
hypothesis is true [2]. Using this inequality, we show the Riemann hypothesis is
true.

2. Results

Theorem 2.1. Given a natural number

n = qa11 × q
a2
2 × · · · × qamm
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such that q1, q2, · · · , qm are prime numbers, then we obtain the following inequality

σ(n)

n
<
π2

6
×

m∏
i=1

qi + 1

qi
.

Proof. From the article reference [1], we know that

(2.1)
σ(n)

n
<

m∏
i=1

qi
qi − 1

.

We can easily prove that
m∏
i=1

qi
qi − 1

=

m∏
i=1

1

1− q−2i
×

m∏
i=1

qi + 1

qi
.

However, we know that
m∏
i=1

1

1− q−2i
<

∞∏
j=1

1

1− q−2j
where qj is the jth prime number and

∞∏
j=1

1

1− q−2j
=
π2

6

as a consequence of the result in the Basel problem [7]. Consequently, we obtain
that

σ(n)

n
<

m∏
i=1

qi
qi − 1

<
π2

6
×

m∏
i=1

qi + 1

qi
.

�

Theorem 2.2. For x ≥ 11, we have∑
q≤x

1

q
< ln lnx+ γ − 0.12

where q ≤ x means all the primes lesser than or equal to x.

Proof. For x > 1, we have ∑
q≤x

1

q
< ln lnx+B +

1

ln2 x

where

B = 0.2614972128 · · ·
is the (Meissel-)Mertens constant, since this is a proven result from the article
reference [4]. This is the same as∑

q≤x

1

q
< ln lnx+ γ − (C − 1

ln2 x
)

where γ − B = C > 0.315718452054, because of γ > B. If we analyze (C − 1
ln2 x

),
then this complies with

(C − 1

ln2 x
) > (0.315718452054− 1

ln2 11
) > 0.12



THE RIEMANN HYPOTHESIS 3

for x ≥ 11 and thus, we finally prove that∑
q≤x

1

q
< ln lnx+ γ − (C − 1

ln2 x
) < ln lnx+ γ − 0.12.

�

Definition 2.3. We recall that an integer n is said to be squarefree if for every
prime divisor q of n we have q2 - n, where q2 - n means that q2 does not divide n
[1].

Theorem 2.4. Given a squarefree number

n = q1 × · · · × qm
such that q1, q2, · · · , qm are odd prime numbers, the largest prime factor of n is
greater than 7 and 3 - n, then we obtain the following inequality

π2

6
× 3

2
× σ(n) ≤ eγ × n× ln ln(219 × n).

Proof. This proof is very similar with the demonstration in Theorem 1.1 from the
article reference [1]. By induction with respect to ω(n), that is the number of
distinct prime factors of n [1]. Put ω(n) = m [1]. We need to prove the assertion
for those integers with m = 1. From a squarefree number n, we obtain that

(2.2) σ(n) = (q1 + 1)× (q2 + 1)× · · · × (qm + 1)

when n = q1 × q2 × · · · × qm [1]. In this way, for every prime number qi ≥ 11, then
we need to prove that

(2.3)
π2

6
× 3

2
× (1 +

1

qi
) ≤ eγ × ln ln(219 × qi).

For qi = 11, we have that

π2

6
× 3

2
× (1 +

1

11
) ≤ eγ × ln ln(219 × 11)

is actually true. For another prime number qi > 11, we have that

(1 +
1

qi
) < (1 +

1

11
)

and

ln ln(219 × 11) < ln ln(219 × qi)
which clearly implies that the inequality (2.3) is true for every prime number qi ≥
11. Now, suppose it is true for m− 1, with m ≥ 2 and let us consider the assertion
for those squarefree n with ω(n) = m [1]. So let n = q1 × · · · × qm be a squarefree
number and assume that q1 < · · · < qm for qm ≥ 11.

Case 1: qm ≥ ln(219 × q1 × · · · × qm−1 × qm) = ln(219 × n).
By the induction hypothesis we have

π2

6
× 3

2
×(q1+1)×· · ·×(qm−1+1) ≤ eγ×q1×· · ·×qm−1×ln ln(219×q1×· · ·×qm−1)

and hence
π2

6
× 3

2
× (q1 + 1)× · · · × (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × · · · × qm−1 × (qm + 1)× ln ln(219 × q1 × · · · × qm−1)
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when we multiply the both sides of the inequality by (qm + 1). We want to show
that

eγ × q1 × · · · × qm−1 × (qm + 1)× ln ln(219 × q1 × · · · × qm−1) ≤

eγ×q1×· · ·×qm−1×qm× ln ln(219×q1×· · ·×qm−1×qm) = eγ×n× ln ln(219×n).

Indeed, the previous inequality is equivalent with

qm × ln ln(219 × q1 × · · · × qm−1 × qm) ≥ (qm + 1)× ln ln(219 × q1 × · · · × qm−1)

or alternatively

qm × (ln ln(219 × q1 × · · · × qm−1 × qm)− ln ln(219 × q1 × · · · × qm−1))

ln qm
≥

ln ln(219 × q1 × · · · × qm−1)

ln qm
.

From the reference [1], we have that if 0 < a < b, then

(2.4)
ln b− ln a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
.

We can apply the inequality (2.4) to the previous one just using b = ln(219 × q1 ×
· · · × qm−1 × qm) and a = ln(219 × q1 × · · · × qm−1). Certainly, we have that

ln(219 × q1 × · · · × qm−1 × qm)− ln(219 × q1 × · · · × qm−1) =

ln
219 × q1 × · · · × qm−1 × qm

219 × q1 × · · · × qm−1
= ln qm.

In this way, we obtain that

qm × (ln ln(219 × q1 × · · · × qm−1 × qm)− ln ln(219 × q1 × · · · × qm−1))

ln qm
>

qm
ln(219 × q1 × · · · × qm)

.

Using this result we infer that the original inequality is certainly satisfied if the
next inequality is satisfied

qm
ln(219 × q1 × · · · × qm)

≥ ln ln(219 × q1 × · · · × qm−1)

ln qm

which is trivially true for qm ≥ ln(219 × q1 × · · · × qm−1 × qm) [1].
Case 2: qm < ln(219 × q1 × · · · × qm−1 × qm) = ln(219 × n).
We need to prove that

π2

6
× 3

2
× σ(n)

n
≤ eγ × ln ln(219 × n).

We know that 3
2 < 1.503 < 4

2.66 . Nevertheless, we could have that

3

2
× σ(n)

n
× π2

6
<

4× σ(n)

3× n
× π2

2× 2.66

and therefore, we only need to prove that

σ(3× n)

3× n
× π2

5.32
≤ eγ × ln ln(219 × n)
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where this is possible because of 3 - n. If we apply the logarithm to the both sides
of the inequality, then we obtain that

ln(
π2

5.32
) + (ln(3 + 1)− ln 3) +

m∑
j=1

(ln(qj + 1)− ln qj) ≤ γ + ln ln ln(219 × n).

From the reference [1], we note that

ln(q1 + 1)− ln q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In addition, note that ln( π2

5.32 ) < 1
2 + 0.12. However, we know that

γ + ln ln qm < γ + ln ln ln(219 × n)

since qm < ln(219 × n) and therefore, it is enough to prove that

0.12 +
1

2
+

1

3
+

1

q1
+ · · ·+ 1

qm
≤ 0.12 +

∑
q≤qm

1

q
≤ γ + ln ln qm

where qm ≥ 11. In this way, we only need to prove that∑
q≤qm

1

q
≤ γ + ln ln qm − 0.12

which is true according to the Theorem 2.2 when qm ≥ 11. In this way, we finally
show the Theorem is indeed satisfied. �

Theorem 2.5. Given a natural number

n = 2a1 × 3a2 × 5a3 × 7a4 > 5040

such that a1, a2, a3, a4 ≥ 0 are integers, then the Robin’s inequality is true for n.

Proof. Given a natural number n = qa11 × qa22 × · · · × qamm > 5040 such that
q1, q2, · · · , qm are prime numbers, we need to prove that

σ(n)

n
< eγ × ln lnn

that is true when
m∏
i=1

qi
qi − 1

< eγ × ln lnn

according to the inequality (2.1). Given a natural number n = 2a1×3a2×5a3 > 5040
such that a1, a2, a3 ≥ 0 are integers, we have that

m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × ln ln(5040) ≈ 3.81.

However, we know for n > 5040 that

eγ × ln ln(5040) < eγ × ln lnn

and therefore, the proof is completed for that case. Hence, we only need to prove the
Robin’s inequality is true for every natural number n = 2a1×3a2×5a3×7a4 > 5040
such that a1, a2, a3 ≥ 0 and a4 ≥ 1 are integers. In addition, we know the Robin’s
inequality is true for every natural number n > 5040 such that 7k | n and 77 - n for
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some integer 1 ≤ k ≤ 6 [3]. Therefore, we need to prove this case for those natural
numbers n > 5040 such that 77 | n. In this way, we have that

m∏
i=1

qi
qi − 1

≤ 2× 3× 5× 7

1× 2× 4× 6
= 4.375 < eγ × ln ln(77) ≈ 4.65.

However, we know for n > 5040 and 77 | n that

eγ × ln ln(77) ≤ eγ × ln lnn

and as a consequence, the proof is completed. �

Theorem 2.6. The Robin’s inequality is true for every natural number n > 5040
when 3 - n. More precisely: every possible counterexample n > 5040 of the Robin’s
inequality must comply that 6 | n.

Proof. We will check the Robin’s inequality is true for every natural number n =
qa11 × q

a2
2 × · · · × qamm > 5040 such that q1, q2, · · · , qm are prime numbers and 3 - n.

We know this is true when the largest prime factor of n > 5040 is lesser than or
equal to 7 according to the Theorem 2.5. Therefore, the remaining case is when
the largest prime factor of n > 5040 is greater than 7. We need to prove that

σ(n)

n
< eγ × ln lnn

that is true when
π2

6
×

m∏
i=1

qi + 1

qi
< eγ × ln lnn

according to Theorem 2.1. Using the equation (2.2), we obtain that will be equiv-
alent to

π2

6
× σ(n′)

n′
< eγ × ln lnn

where n′ = q1 × · · · × qm is the squarefree kernel of n [1]. However, the Robin’s
inequality has been proved for all integers n not divisible by 2 (which are bigger than
10) [1]. Hence, we only need to prove the Robin’s inequality is true when 2 | n′. In
addition, we know the Robin’s inequality is true for every natural number n > 5040
such that 2k | n and 220 - n for some integer 1 ≤ k ≤ 19 [3]. Consequently, we only
need to prove the Robin’s inequality is true for all n > 5040 such that 220 | n and
thus,

eγ × n′ × ln ln(219 × n′

2
) < eγ × n′ × ln lnn

because of 219 × n′

2 < n when 220 | n and 2 | n′. In this way, we only need to prove
that

π2

6
× σ(n′) ≤ eγ × n′ × ln ln(219 × n′

2
).

According to the equation (2.2) and 2 | n′, we have that

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× ln ln(219 × n′

2
)

which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× ln ln(219 × n′

2
)

that is true according to the Theorem 2.4 when 3 - n
′

2 . �
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Definition 2.7. Recall that an integer is t-free if and only if it is not divisible by
qt for some prime q.

Theorem 2.8. The Robin’s inequality is true for every natural number n > 5040
when 6 | n.

Proof. Let’s define s(n) = σ(n)
n [6]. Hence, we need to prove that

s(n) < eγ × ln lnn

when 6 | n. Suppose that n = 2a × 3b × m, where 6 - m, a ≥ 1 and b ≥ 1 are
integers. Therefore, we need to prove that

s(2a × 3b ×m) < eγ × ln lnn.

We know that

s(2a × 3b ×m) = s(2a)× s(3b)× s(m)

since s is multiplicative [6]. In addition, we know that s(2a) < 2 and s(3b) < 3
2 for

every positive integers a and b [6]. In this way, we have that

s(2a)× s(3b)× s(m) < 3× s(m).

Hence, we only need to prove that

3× s(m) < eγ × ln lnn.

In the article reference [5], it is introduced ψt, a generalization of the Dedekind ψ
function defined for any integer t ≥ 2 by

ψt(n) = n×
m∏
i=1

1− q−ti
1− q−1i

such that every prime qi divides n with ω(n) = m. All 5-free integers greater than
5040 satisfy the Robin’s inequality [1]. If n is t-free then the sum of divisor function
σ(n) is lesser than ψt(n) [5]. Hence, it is enough to prove that

3× ψt(m)

m
< eγ × ln lnn

when 6 - m and t > 5. That would be equivalent to

3×
m∏
i=3

1− q−ti
1− q−1i

< eγ × ln lnn

just assuming that q1 = 2 and q2 = 3. For every prime qi > 3, we would have that

1− q−ti
1− q−1i

=
qi × (1− q−ti )

qi − 1
<

3× (1− q−ti )

2

since qi
qi−1 decreases as qi increases. Therefore, we only need to prove that

9

2
×

m∏
i=3

(1− q−ti ) < eγ × ln lnn.

Since (1− q−ti ) < 1, then we will have that
∏m
i=3(1− q−ti ) < 1. As result, we only

need to prove that
9

2
< eγ × ln lnn.
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We know that 9
2 < 5 and as a consequence, 9

2 < ln ln ee
5

< eγ×ln ln ee
5

. In addition,

we know the Robin’s inequality is true for every natural number 5040 < n ≤ 1010
10

[3]. Therefore, we only need to prove the Robin’s inequality is true for every natural

number n > 1010
10

. However, for every natural number n > 1010
10

such that n is
t-free, t > 5 and 6 | n, we will have that

eγ × ln ln ee
5

< eγ × ln lnn

due to ee
5

< 1010
10

. Since every natural number n > 5040 is t-free for some t ≥ 2,
then the Theorem is true. �

Theorem 2.9. The Robin’s inequality is true for every natural number n > 5040.

Proof. This is a direct consequence of Theorems 2.6 and 2.8. �

Theorem 2.10. The Riemann hypothesis is true.

Proof. If the Robin’s inequality is true for every natural number n > 5040, then
the Riemann hypothesis is true [2]. Consequently, this is true according to the
Theorem 2.9. �

3. Conclusions

The practical uses of the Riemann hypothesis include many propositions which
are known true under the Riemann hypothesis, and some that can be shown equiv-
alent to the Riemann hypothesis [2]. Certainly, the Riemann hypothesis is close
related to various mathematical topics such as the distribution of prime numbers,
the growth of arithmetic functions, the Lindelöf hypothesis, the large prime gap
conjecture, etc [2]. In this way, this proof of the Riemann hypothesis could spur
considerable advances in many mathematical areas, such as the number theory and
pure mathematics [2].
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