Presentation Open Access

A practical approach for the peel stress prediction in the trailing-edge adhesive joint of wind turbine blades

Rosemeier, Malo; Gebauer, Thomas; Antoniou, Alexandros


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20210118084020.0</controlfield>
  <controlfield tag="001">4020207</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">7 ‐ 10 September 2020</subfield>
    <subfield code="p">2</subfield>
    <subfield code="a">41st Risø International Symposium on Materials Science - Materials and Design for Next Generation Wind Turbine Blades</subfield>
    <subfield code="c">Roskilde, Denmark</subfield>
    <subfield code="n">Leading edge II</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">P. E. Concepts GmbH</subfield>
    <subfield code="a">Gebauer, Thomas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems</subfield>
    <subfield code="0">(orcid)0000-0001-6580-6652</subfield>
    <subfield code="a">Antoniou, Alexandros</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1909999</subfield>
    <subfield code="z">md5:513aeb027af31d8009f6419026df1cf9</subfield>
    <subfield code="u">https://zenodo.org/record/4020207/files/risoe2020_rosemeier_rev01.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.vindenergi.dtu.dk/english/research/symposium-on-materials-science/41st-risoe-international-symposium-on-materials-science</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-09-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4020207</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems</subfield>
    <subfield code="0">(orcid)0000-0002-9853-0581</subfield>
    <subfield code="a">Rosemeier, Malo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A practical approach for the peel stress prediction in the trailing-edge adhesive joint of wind turbine blades</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Wind turbine blades consist of thin-walled cylindric and airfoil-shaped structures, which are prone to &amp;ldquo;breathing&amp;rdquo; or &amp;ldquo;pumping&amp;rdquo; when subjected to cyclic loading. The &amp;ldquo;pumping&amp;rdquo; induces a peel stress in the adhesive layer of the trailing-edge bond line. To take account of this peel stress in the design phase, adequate models are required. State-of-the-art blade finite element (FE) models are usually implemented using shell elements. The trailing-edge joint is often represented by solid elements that are connected with the shell elements. The peel stress peak of interest occurs at the edge of the adhesive joint, which is, subject to a singularity, however. This study proposes a practical approach to estimate the peel stress peak in the adhesive joint with the help of the analytical solution which approximates and extrapolates the FE results. Moreover, different modeling techniques are benchmarked in respect of the peel stress prediction.&lt;/p&gt;

&lt;p&gt;Paper: &lt;a href="http://doi.org/10.1088/1757-899X/942/1/012026"&gt;10.1088/1757-899X/942/1/012026&lt;/a&gt;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4020206</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4020207</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
118
119
views
downloads
All versions This version
Views 118118
Downloads 119119
Data volume 227.3 MB227.3 MB
Unique views 109109
Unique downloads 9696

Share

Cite as