Conference paper Open Access

A Framework for Real-time and Personalisable Human Ergonomics Monitoring

Fortini, Luca; Lorenzini, Marta; Kim, Wansoo; De Momi, Elena; Ajoudani, Arash


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200908005925.0</controlfield>
  <controlfield tag="001">4017491</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Lorenzini, Marta</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Kim, Wansoo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Politecnico di Milano</subfield>
    <subfield code="a">De Momi, Elena</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Ajoudani, Arash</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3192106</subfield>
    <subfield code="z">md5:7beeefbeaec64069af5b7139ee45527b</subfield>
    <subfield code="u">https://zenodo.org/record/4017491/files/A Framework for Real-time and Personalisable Human Ergonomics Monitoring.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ergolean</subfield>
    <subfield code="o">oai:zenodo.org:4017491</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Fortini, Luca</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Framework for Real-time and Personalisable Human Ergonomics Monitoring</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ergolean</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">850932</subfield>
    <subfield code="a">Rethinking Human Ergonomics in Lean Manufacturing and Service Industry: Towards Adaptive Robots with Anticipatory Behaviors</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The objective of this paper is to present a personalisable human ergonomics framework that integrates a method for real-time identification of a human model and an ergonomics monitoring function.&amp;nbsp; The human model is based on a floating base structure and on a Statically Equivalent Serial Chain (SESC) model used for the estimation of the whole-body centre of Mass (CoM). A recursive linear regression algorithm (i.e., Kalman filter) is developed to achieve the online identification of the SESC parameters. A visual feedback provides a minimum set of suggested human poses to speed up the identification process, while enhancing the model accuracy based on a convergence value.&amp;nbsp; The online ergonomics monitoring function computes and displays the overloading effects on body joints in heavy lifting tasks. The overloading joint torques are calculated based on the displacement of the Center of Pressure (CoP) between the measured one and the estimated one. Unlike our previous work, the entire process, from the model identification (personalisation) to ergonomics monitoring, is performed in real-time. We evaluated the efficacy of the proposed method through human experiments during model identification and load lifting tasks. Results demonstrate the high exploitation potential of the framework in industrial settings, due to its fast personalisation and ergonomics monitoring capacity. &amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4017490</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4017491</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
67
92
views
downloads
All versions This version
Views 6767
Downloads 9292
Data volume 293.7 MB293.7 MB
Unique views 6262
Unique downloads 8686

Share

Cite as