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The aim of this paper is to describe a solution suitable for the automation of standard 

pollen information service (EN 16868:2019). We are describing the RealForAll 

integrated information system developed for automatic airborne pollen detection 

and real-time data delivery to end-users. This solution is based on the 

measurements from the Rapid-E airborne particle monitor. The system 

incorporates an AI-enabled subsystem based on a convolutional neural network 

that continuously retrieves raw data from Rapid-E and performs the classification 

of airborne pollen. The main advantages of this system reflect in real-time data 

delivery and independence of aerobiology experts during the pollen season.  
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1. Introduction 

Pollen is one of the most common triggers of seasonal allergies and around 30% of the 



 

world population suffers from some form of allergic disease (Akdis, Hellings, and 

Agache 2015). In most European countries, national organizations of various kinds 

provide information about pollen concentration in the air, publish pollen forecasts and 

issue warnings. Method for sampling and analysis of airborne pollen is standardized by 

EN 16868:2019 (Ambient air - Sampling and analysis of airborne pollen grains and 

fungal spores for networks related to allergy - Volumetric Hirst method). That standard 

prescribes the use of Hirst-type volumetric devices (Hirst 1952) for sampling airborne 

particles. The device sucks in 10 l of air with suspended aerosols per minute, which then 

impacts on the adhesive coated, transparent plastic tape that moves past the inlet at 2 

mm per hour to give a time-related sample. The collected samples are analysed 

manually using a light microscope (Galán et al. 2014; Buters et al. 2018). This is a very 

tedious, labour-intensive and time consuming method and measurement data are always 

delayed from a few days up to a few weeks.   

Real-time measurements of airborne pollen concentrations can improve the 

quality of life in a pollen sensitive population. Timely information can help people to 

prevent allergy symptoms and to better manage their allergic diseases (Bousquet et al. 

2019). If patients had access to information about immediate exposure levels, they 

could take appropriate medication and plan their activities. Also, pollen forecasts play 

an integral role in the management of pollen allergies. Real-time measurements can be 

used for improvement of short term forecasts, particularly by enabling assimilation of 

measurement data and models (Sofiev et al. 2017). In addition, up-to-date information 

on the concentration of  harmful airborne particles in the air (e.g. fungi and spores) can 

be very effective in agriculture and forestry (Garzia-Mozo, 2011). For example, 

application of protective agents at the right moment can prevent crop damage and 

increase yields. 



 

At present, a number of web portals and mobile applications provide outdated 

information about airborne pollen concentration or estimated current values resulting 

from coupling  the previous day’s observations with pollen forecasts (Pasyfo 2019; 

Polleninfo 2019; Norkko 2019). In order to improve the pollen information service and 

provide real-time measurements to end users it is necessary to automate the whole 

process of pollen detection. Automation of this process requires a measurement device 

(particle monitor) capable of producing data in digital format which can be further 

processed automatically. Such a device should sample and characterize single airborne 

particles with sufficient detail to enable their identification. Application of advanced 

technologies made real-time pollen monitoring possible only recently. Currently, two 

types of technologies seem to be the most suitable for detecting airborne  pollen: 

automatic multi stack image recording and  laser-induced fluorescence  (Huffman et. al, 

2019). Another challenge in automatic pollen detection is to develop an information 

system which will harvest raw data from particle monitors, process it and disseminate 

classification results to end users. Despite suitable particle monitors being commercially 

available, there is no out-of-the-box system that integrates detection and classification 

particles of interest. Such automatic integrated systems have to be developed 

considering the needs of stakeholders. 

An interactive map (https://oteros.shinyapps.io/pollen_map/) visualises 

distribution of pollen monitoring stations throughout the world (Buters et al. 2018). 

Search for only automatic stations on the map, results in 4 types of operational solutions 

for pollen detection. However, they have some limitations regarding time necessary to 

produce information or the number of pollen types which  can be identified. Japan is the 

pioneer in automatic detection of airborne pollen using the KH-3000 particle monitor. 

Their solution is limited to monitoring of only concentrations of Japanese cedar 



 

(Hanakosan 2019; Kawashima et al. 2017). BAA500 particle monitors are used across 

Germany. A solution integrating those monitors delivers pollen concentrations for 

various pollen types but with an average delay of 3-6 h (Oteros et al. 2015; Hund 2019; 

Pollenflug 2019).  The remaining two solutions are PolenSense 

(https://pollensense.com/) used in North America and Swisens Poleno 

(https://swisens.ch/) used in Switzerland, but contrary to information from their web 

sites, there are no available online resources showing operational full season  real-time 

measurements. 

The aim of this paper is to describe a solution to automate pollen information 

service, which overcomes limitations associated with previously mentioned solutions. 

This is achieved by developing the RealForAll integrated information system for 

automatic detection of various pollen types and real-time data delivery to end-users 

(RealForAll 2019). This is the first solution which integrates Rapid-E particle monitor, 

a state-of-the-art technology in the field of automatic pollen monitoring (Plair 2019), 

and artificial intelligence (AI) techniques in order to classify full spectra of allergy 

relevant airborne pollen types. Classified data are transferred to a subsystem responsible 

for storing and delivering airborne pollen concentration to end-users through web and 

mobile applications in real-time. 

The Rapid-E particle monitor is based on laser-induced fluorescence technique 

and this is the first study which evaluates its performance in automatic real-time pollen 

monitoring comparable with the requirements given in EN 16868:2019. So far only 

proof of concept study was conducted (Sauliene et al. 2019) which set the basis for this 

full season performance evaluation on larger spectra of pollen types in an operational 

environment. 



 

Since automatisation is a prerequisite for fostering the mobile health concept in 

allergy care (Matricardi et al. 2019) the results of this work are expected to support an 

ongoing rapid change of pollen monitoring (Buters, Schmidt‐Weber, and Oteros 2018). 

2. Related work 

Automation of a process related to airborne pollen detection may be positioned in the 

domain of environmental informatics. Environmental informatics applies computer 

science disciplines to environmental information processing (Hilty et al. 1995). 

Environmental data has a complex nature and its processing requires the application of 

advanced information technologies like machine learning, deep learning, data analysis 

and data mining. There are a lot of recent examples of AI techniques application in 

solving environmental problems (Wang et al. 2019; McGovern et al. 2017; Manogaran 

and Lopez 2018), which serves developing integrated information systems for the 

monitoring and management of environmental data (Fang et al. 2014; Fang et al. 2015). 

There is a notable interest in a real-time detection of bioaerosols which is 

extensively overviewed by  Huffman et. al (2019). The authors gave an overview of 

major techniques and devices for real-time airborne particle detection. They emphasized 

laser-induced fluorescence as the most promising technology for automatic detection of 

bioaerosols of interest including different allergenic pollen types. This technique uses 

monochromatic light to trigger scattering and fluorescence which are then detected to 

analyse chemical composition, size and morphology of individual particles. Compared 

to simple particle counters, the laser-induced fluorescence approach is more suitable for 

real-time pollen monitoring where identification of diverse pollen species is required 

since they provide diversity of data needed for precise classification of bioaerosols. 

Rapid-E pollen monitor integrated in the RealForAll system records both scattering and 

fluorescence characteristics for each sampled airborne particle (Kiselev, Bonacina, and 



 

Wolf 2013). Result of that recording is a complex dataset that requires usage of 

advanced machine learning tools for identification differences between different pollen 

types.  

The resulting measurements from bioaerosol monitors are further analysed for 

the purpose of discriminating between bacteria, fungal spores and pollen and different 

AI based strategies are tested (Crawford et al., 2015; Pan, Huang, and Chang, 2012 ; 

Robinson et al., 2013; Ruske et al., 2017; Ruske et al., 2018; Swanson and Huffman, 

2020). It was shown that for the task of airborne particle classification, clustering in 

general performs slightly worse than the supervised learning methods (Ruske et al. 

2017). Same authors also noted that use of neural networks may improve accuracy of 

classification. Šauliene et al. (2019) used three different architectures of convolutional 

neural networks to analyse scattering and the fluorescence properties for each particle 

reaching the Rapid-E device. That was the first analysis of the pollen monitoring 

capabilities of the Rapid-E pollen monitor. They found that the Rapid-E has the 

potential to identify pollen types in real time but it is necessary to improve classification 

algorithms to include more pollen types. Recently, Sauvageat et al. (2020) conducted 

research on utilizing convolutional neural networks to classify data from Swisens 

Poleno device monitor. They applied digital holography technique on fluorescence data 

to reconstruct images of airborne particles. These images are further processed by the 

neural network and they succeeded to identify up to ten different pollen species. 

However, a good classification is just one step toward the automation of the 

whole process of airborne pollen monitoring. None of the results from previously 

mentioned studies haven’t been yet implemented in an operational environment for real-

time pollen monitoring. In order to develop a fully operational solution, it is necessary 

to incorporate all activities of that process in an integrated information system, starting 



 

from raw data preprocessing to presenting real-time measurements in a user-friendly 

manner.  

3. RealForAll system 

RealForAll system is an integrated system for real-time monitoring of airborne allergens 

and dissemination of information about their concentration.  

The system has been developing since 2018 and has already monitored one full 

pollen season. The system currently provides pollen measurements from two locations: 

Novi Sad, Serbia and Osijek, Croatia. By implementation of this system, the whole 

process of pollen detection is successfully automated. 

The software architecture of this system is presented in figure 1. The system 

consists of several subsystems where each subsystem has a particular role. Role of the 

Rapid-E device, which is represented as a component in figure 1, is to collect airborne 

particles and generate raw optical data. These data are further processed by the AI-

enabled subsystem for classification in order to detect different types of particles 

(component Data classification). Classified data are sent to the RealForAllHub 

subsystem whose role is to store classified data and to transform it in an appropriate 

format for the end-user applications. Detailed description of these subsystems is given 

below. 

3.1 Rapid-E 

The Rapid-E device is an airborne particle monitoring station. It is designed for 

automatic and real-time analysis of single particles suspended in air. The device 

aspirates ambient air with suspended particles that interact with the laser light sources 

(Šauliene et al. 2019) resulting in scattered light and fluorescence that are combined for 

characterizing each particle (Kiselev, Bonacina, and Wolf 2013). The scattered photons 



 

are captured from different angles by 24 time-resolving detectors (Kiselev, 2019), 

resulting in an image which size depends on the particle’s morphology (i.e. size and 

shape). Chemical characteristics of detected particles are represented by their emission 

spectrum and fluorescence lifetime. After excitation by the deep-UV laser (337 nm) 

emitted fluorescence is recorded at 32 measuring channels within a spectral range of 

350–800 nm and eight sequential acquisitions/bands with 500 ns retention. In addition, 

the rate of decrease of the fluorescence intensity (fluorescence lifetime) after double 

excitation by a laser beam is recorded at four spectral bands (350-400, 420-460, 511-

572, 672-800) and 2 ns temporal resolution (Kiselev and Kiseleva, 2019).   

Rapid-E device provides a JSON file containing scattered light, fluorescence 

spectrum and lifetime properties of each particle sampled in a minute. The device has a 

LAN connector and provides a secure shell that can be used to access the data in real-

time. 

The RealForAll system currently incorporates two Rapid-E devices. One is 

installed in Novi Sad, Serbia and the other is in Osijek, Croatia. The devices are 

connected to a local network of institutions hosting those devices which provides a 

stable connection between devices and the subsystem for classification. Both devices 

are operational and generated data in real-time during pollen season, from February to 

October 2019. 

3.2 Subsystem for classification 

The AI-enabled subsystem for classification continuously retrieves raw data from 

Rapid-E and performs the classification of pollen particles. The subsystem detects and 

counts particles larger than 8 microns and identifies several different pollen types. 

Classification is based on artificial neural networks implemented in Python using 

PyTorch for neural network implementation (details are given in Chapter 4).  



 

The subsystem classifies minute measurements in real-time. Classification is 

performed with a latency of a few minutes to ensure that raw data have been retrieved 

from the device. As an output of the classification, the subsystem generates JSON 

documents for each measurement device and time-related sample. The document 

contains a device’s identifier, time of measurement, and measured values for each 

classified pollen type. JSON documents are sent to the RealForAllHub subsystem to be 

stored and further processed. 

3.3 RealForAllHub subsystem 

This subsystem is designed to store and maintain classified data and it is implemented 

using Java EE technologies. Classified data are stored in PostgreSQL relational 

database (PostgreSQL 2019). The subsystem provides REST service for importing data 

into the database (ImportService component in figure 1). This service is used by the 

subsystem for classification but any other institution with real-time pollen 

measurements can be joined easily. The only restriction imposed by technology is to 

provide a continuous flow of classified data in the format described by this REST 

service. Those measurements will be accessible through our end-user applications.  

The end-user applications show hourly pollen concentrations, but the 

RealForAllHub subsystem receives minute measurements. This requires aggregation of 

measurement data and it is done on each hour but postponed by several minutes to 

ensure that all data for a given hour are received (Aggregation component in figure 1). 

Aggregation calculates the average hourly value from minute values within the last 

hour. Those aggregated data are also stored in the database. There is a configuration in 

the system regarding how many minute measurements are expected to be received 

during an hour. A notification email is sent to the system admin in the case that some 

measurements are missing (Notification component in figure 1). 



 

This subsystem provides REST services to end-user applications. Mobile and 

web applications use the AppService component (figure 1) to obtain and visualize data 

about pollen concentrations. Also, there is the AdminService component (figure 1) used 

by the web application for system administration. 

3.4 End-user applications 

The main aim of the RealForAll system is to disseminate information about pollen 

concentration. Appropriate Android and iOS mobile applications, as well as the web 

application, have been developed for that purpose (Android app 2019; iOS app 2019; 

Web app 2019).  

Mobile applications show real-time pollen measurements from available Rapid-

E devices as well as hourly averages for a selected device (figure 2). Presented 

measurements can be filtered by pollen types and compared to measurements from 

other devices. The applications also provide a forecast of pollen distribution over 

Europe generated by SILAM (SILAM 2019). In addition, the applications may be used 

to keep personal allergy symptoms diary in order to find a correlation between recorded 

symptoms and airborne pollen measurements. Information from this diary may be 

useful in the evaluation of prescribed treatments and for better management of allergic 

diseases.  The web application for end-users has fewer features than mobile applications 

and it only provides measured hourly average concentrations and the forecast. 

The RealForAll system also has a web application for system administration. It 

is not exposed publicly and only authorised users have access. The application allows 

the management of the RealForAll system (i.e. adding new pollen types and devices as 

well as configuration of some system properties). It also allows the export of minute and 

hourly classifications for a selected period. 



 

4. Classification 

The output of the Rapid-E device is a JSON file containing scattered light, fluorescence 

spectrum and lifetime of fluorescence signals for every particle sampled in a minute. 

The detailed description of the output files structure is given in the earlier pilot study 

(Šauliene et al. 2019). The character of the measurements (i.e involves a temporal 

component for scattering light and fluorescence and multiple wavelength bands for 

lifetime of fluorescence) allows transferring light intensity signals into two dimensional 

image format suitable for analysis using Convolutional Neural Network. This section 

provides details regarding classification methodology used in the RealForAll system. 

4.1 Data collection 

Labeled data for training the classifier are obtained in calibration events, where 

the domain expert is exposing the Rapid-E device with collected aerosol samples in a 

controlled environment. Each calibration resulted in JSON files, belonging to the same 

aerosol class. Calibration was performed for 24 the most common pollen classes (Acer, 

Alnus, Ambrosia, Artemisia, Betula, Broussonetia, Carpinus, Corylus, Fraxinus 

excelsior, Fraxinus ornus, Juglans, Morus, Other pollen, Pinaceae, Plantago, Platanus, 

Poaceae, Populus, Quercus, Salix, Taxaceae, Tilia, Ulmus, Urticaceae). In addition, 

real-time measurements at a time when there was no pollen in the air are labeled as 

“other” and “starch” and used in training the classifier in order to prevent mixing other 

bioaerosols (i.e. fungal spores) and starch with pollen. 

4.2 Data preprocessing 

Laser-induced data tend to be noisy and using them in their raw form can result 

in poor generalization. To avoid this, scattered light images are centred with respect to 

the time axis around the mean of indices with maximum values over 24 angle pixels and 



 

then cut or padded with zeros to fit the size of 20x120 (4 boundary angle pixels are 

removed due to device dependence). Fluorescence spectrum and lifetime signals are 

normalized into 0-1 range. The signals of scattered light and fluorescence spectrum are 

smoothed with the Savitzky–Golay filter (Savitzky and Golay 1964) to additionally 

reduce the noise. Fluorescence spectrum signals were converted into a 4x32 pixels 

image by stacking second to fourth acquisitions/bends. Similarly, fluorescence lifetime 

signals were converted into a 4x24 pixels image. Particle size approximation calculated 

from the scattered light image and lifetime weights calculated from the fluorescence 

lifetime signal were also added as features to the classification model. 

To ensure only high-quality records are analyzed, detected particles with the 

scattering image width larger than 450 pixels, at least one of four maximal spectral 

peaks lower than 408 nm or larger than 495 nm, maximum spectral intensity less than 

2500 and lifetime maximum peak not detected between 20 ns and 88 ns are filtered out. 

The processed data contains 103593 pollen samples and 6285 samples from real-

time measurements. The data is split into train and test datasets, where the train set 

contains 90% of samples from each class while the remaining events were used for 

testing. 

4.3 Neural network architecture 

The classification algorithm is based on convolutional neural networks (CNN), 

which have so far shown better performance on similar problems in image processing 

and object classification compared to other machine learning classifiers (Krizhevsky, 

Sutskever, and Hinton 2012). CNN allows automatic feature extraction, which is crucial 

when dealing with complex homogeneous data, as well as combining multiple inputs 

from the Rapid-E device to perform classification. The network is processing each data-

type individually using the combination of 2-D convolutions, ReLU activations, batch 



 

normalization, max pooling and dropout, considered as a convolutional block (figure 3). 

By doing so, it learns the most important features and reduces the dimensionality of data 

provided by Rapid-E. The features are first equalized by passing each of them to one 

fully connected layer of the same size, so that each input has the same contribution to 

the feature vector, and then concatenated, together with the additional features of size 

and lifetime weights and are passed to the fully connected layer consisting of 26 nodes 

since there are 26 aerosol classes for identification, after which the classification is 

performed with the log-softmax activation function. In this way the network 

architecture allows the gradient to flow through the whole network, updating the 

weights for each distinct source, based on the joint decision. The cost function used for 

training the network is negative log-likelihood loss and the updater is the stochastic 

gradient descent with a learning rate of 0.001 and a momentum of 0.9. We created 

batches used for training the model in such a way that each batch contains the same 

number of samples from each class and thus resolved the unbalanced dataset problem. 

The detailed description of the network is given in Šauliene et al. (2019). 

4.4 Classification results 

On the test dataset, the model yields an accuracy of 65.3% on 26 classes (Figure 

4). The precision, recall and F1 score of the model are 59%, 69% and 61%, 

respectively. The number of classes involved in the test is rather high making the task 

unrealistic for real life monitoring. Therefore the real performance is evaluated by 

comparison to standard monitoring of airborne pollen (EN 16868:2019) performed in 

Novi Sad in 2019. In order to neutralize losses from data preprocessing, RealForAll data 

were multiplied by a scaling factor (SF) corresponding to the relationship between 

quantity measured by standard method EN 16868:2019 and quantity obtained by 

RealForAll system. The performance was tested by analyzing Pearson correlation 



 

coefficients (R) between average daily pollen concentrations measured by two systems 

while focusing on the periods when standard method detects pollen of interest. Good 

performance (R > 0.7) was confirmed for 11 pollen types (Figure 5) while the rest 

classifications underperformed (Figure 6). Pearson's correlation coefficients (R) and 

scaling factor (SF) are given on both figures. For both good and underperforming 

classifications there is a notable amount of false positive detections that are eliminated 

by manual limitation of the pollen season. Apart from the further improvement of the 

classification model by introducing the shortcut connections between network layers 

(He et al. 2016) and increasing the width of these networks (Zagoruyko and Komodakis 

2016) for better feature extraction, the next developments will strive to automate the 

limitation of the season by introducing confidence thresholds for the classifications 

under which the model will not deliver data to the RealForAllHub subsystem. Future 

development of the classification should involve additional separation systems for the 

mixing classes since some classes are very well separated while some are not (Figure 4). 

It should be noted that for nearly all underperformed classifications, signals are 

characterized by low intensity. This is also characteristic for the standard method EN 

16868:2019, but this is even more augmented in automatic classification by strict 

filtering which ensures that only high quality detections are analyzed but it decreases 

the detection limit of the method. 

5. Discussion 

By implementing the RealForAll system in a production environment, we succeeded in 

the automation of the pollen detection process and the dissemination of real-time 

measurements. Currently, our mobile applications are installed on more than 1700 

mobile devices. The main advantages of this system in comparison to the standard 

method EN 16868:2019 reflect in its extensibility, real-time data delivery and 



 

independence of aerobiology experts during the pollen season. 

RealForAll system can, with relative ease, be adapted to a wider user base. 

Namely, introducing new Rapid-E devices in the RealForAll system would not have a 

significant impact on overall system performance. In the case of the standard method 

EN 16868:2019, adding new Hirst devices require additional manual effort directly 

influencing operational time and cost. Also, it enables interoperability with other 

systems for pollen detection. They can easily send and store their measurements to the 

RealForAll system with the advantage that their data will be efficiently disseminated 

through RealForAll end-user applications. 

The irreplaceable step in the standard method EN 16868:2019 is the manual 

classification of data performed by aerobiology experts. Operation of the RealForAll 

system doesn’t require this kind of expertise because the process of classification is 

automated by the AI module. 

Finally, the significant difference between those two approaches is the time 

needed to provide relevant pollen measurements. Table 1 shows the approximate 

duration of activities carried out in order to get hourly pollen measurements using the 

standard method and the RealForAll system, respectively. The Rapid-E device is 

sampling in real-time so the sample characteristics are measured for every minute and 

the hourly sample is available already after 60 minutes of measurements. In the case of 

the Hirst device, it is not economical to process samples every hour and because of that 

sample is usually available after either 24 hours sampling or more common after one 

week. A 24-hour sample obtained from the Hirst device requires a minimum 2 hours for 

preprocessing and classification while in the case of the RealForAll system that activity 

is done in 15 minutes. Taking everything into consideration, we can conclude that the 



 

RealForAll system can disseminate pollen information at least 20 times faster than the 

standard method. 

Although the RealForAll system shows great results in performance and 

operability, there is still some room for improvement. Analyzing values from table 1, it 

can be seen that the RealForAll system has latency in data provision but it is not due to 

the long-lasting classification process as it may seem. This delay is a consequence of 

batch data processing. The subsystem for classification downloads data from the Rapid-

E device at periodic intervals. The classification process is not aware of whether the 

download is complete and because of that, it is postponed for 10 minutes to provide 

enough time for finishing the download process. However, this does not guarantee that 

all data will be processed. Size of Rapid-E minute recordings can vary from 10 to 

100Mb and those files may not be transferred in 10 minutes in the case of poor Internet 

connection. This problem can be solved by implementing streaming data processing. In 

that manner, we would have a continuous flow of raw data from Rapid-E devices and 

data will be immediately classified as they arrive without any delay. However, the 

latency of several minutes is still inevitable to ensure that the RealForAllHub subsystem 

has received most of the classified data before it performs aggregation. 

6. Conclusion 

In this paper, we introduce an integrated system for real-time monitoring of airborne 

allergens and the dissemination of information about their concentration. This system 

automatises the standard method EN 16868:2019 for pollen detection. The system 

provides hourly measurements with a latency of 15 minutes which is a significant 

improvement in comparison with the standard method. Also, the system provides easy 

integration of new devices as well as pollen measurements from other systems, which 

brings an advantage to application users who get a single point of access to real-time 



 

measurements from different locations. 

Biological contaminants pose severe threats to the manufacturing processes of 

numerous industrial, food and pharmaceutical products. Additionally, microorganisms 

such as fungi, bacteria, and viruses can cause significant damage to workers’ health and 

plant health in agriculture. The introduction of automatic bioaerosols monitoring in 

industrial enterprises is expected to minimize negative occupational health effects and 

maximize profit.  The discrimination of bioaerosols is often a prerequisite for successful 

implementation of mitigation measures. For example, for successful allergy 

management, it is not sufficient to know total pollen concentrations but the quantity of 

each allergen in the atmosphere so sensitive individuals could be selectively warned. 

Similarly, the presence of only specific fungal spores should be a trigger for fungicide 

spraying in glass houses indicating that discrimination of bioaerosols has more value 

than information on their bulk quantity in production enterprises. 

The RealForAll system proved that AI enables automation for monitoring of 

airborne allergens which is part of routine environmental monitoring in about 700 

stations worldwide (Map 2019). This opens possibilities for the application of 

aerobiology in a variety of industries in particular relation to human, animal and plant 

health. Despite the fact that further improvement of classification models is needed to 

enable identification full spectra of bioaerosols suspended in the atmosphere, the 

RealForAll system is an example of how automation of tedious manual process that 

requires a notable amount of domain expertise (i.e. identification of pollen) is supported 

by advanced laser-induced fluorescence measurements and AI. Systems for real-time 

pollen identification are still in their ongoing phase of development and a lot of effort 

should be made especially regarding classification accuracy. Opening raw data from 

pollen monitors worldwide as well as making classification models publicly available to 



 

other researchers would be very beneficial in order to get scientific feedback and speed 

up further research in this field.  

To sum up, comparing to the Hirst method, the main drawback of implementing 

RealForAll system reflects in its initial investment cost but on the other side, it provides 

real-time pollen measurements which help allergic people to better manage their allergic 

disease and are essential for the improvement of forecasting models (Sofiev 2019). 
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Table 1. Comparison of activity’s duration for standard method EN 16868:2019 and 

RealForAll system when delivering concentrations of airborne pollen at 1h resolution 

Analyzed features Standard method EN 

16868:2019 

RealForAll system 

Sample is available 24-168h 60 minutes 

Identification 

bioaerosols 

Sample 

preprocessing 

1 h / 

Classification 1 h 15 minutes 

Overall time 26-170h 75 minutes 

 

Figure 1. System architecture 

 

Figure 2. Pages of the RealForAll android application that disseminate real-time 

measurements 



 

   

Figure 3. Architecture of neural network used for operational classification of pollen in 

2019 

 

Figure 4. Confusion matrix for the classification model 



 

 

Figure 5. Good performance of the RealForAll system in comparison to standard 

method EN 16868:2019 measurements in Novi Sad during 2019 (Fraxinus represents 

the sum of Fraxinus ornus and Fraxinus excelsior that were classified separately) 



 

 

Figure 6. Underperformance of the RealForAll system in comparison to standard 

method EN 16868:2019 measurements in Novi Sad during 2019 (Urticaceae includes 

Parietaria) 



 

 


