Dataset Open Access

TUT Rare sound events, Development dataset

Diment, Aleksandr; Mesaros, Annamaria; Heittola, Toni; Virtanen, Tuomas


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:contributor>Fagerlund, Eemi</dc:contributor>
  <dc:contributor>Hiltunen, Aku</dc:contributor>
  <dc:contributor>Diment, Aleksandr</dc:contributor>
  <dc:creator>Diment, Aleksandr</dc:creator>
  <dc:creator>Mesaros, Annamaria</dc:creator>
  <dc:creator>Heittola, Toni</dc:creator>
  <dc:creator>Virtanen, Tuomas</dc:creator>
  <dc:date>2017-03-21</dc:date>
  <dc:description>TUT Rare Sound events 2017, development dataset consists of source files for creating mixtures of rare sound events (classes baby cry, gun shot, glass break) with background audio, as well a set of readily generated mixtures and recipes for generating them.

The "source" part of the dataset consists of two subsets:


	background recordings from 15 different acoustic scenes,
	recordings with the target rare sound events from three classes, accompanied by annotations of their temporal occurrences,
	a set of meta files providing the cross-validation setup: lists of background and target event recordings split into training and test subsets (called "devtrain" and "devtest", respectively, indicating they are provided as the development dataset, as opposed to the evaluation dataset released separately). 


The mixture set consists of two subsets (training and testing), each containing ~1500 mixtures (~500 per target class in each subset, with half of the mixtures not containing any target class events). 

 

The collection of the background recording data has been financially supported by European Research Council under the European Unions H2020 Framework Programme through ERC Grant Agreement 637422 EVERYSOUND.</dc:description>
  <dc:description>The license terms are specified in the LICENSE.txt file.</dc:description>
  <dc:identifier>https://zenodo.org/record/401395</dc:identifier>
  <dc:identifier>10.5281/zenodo.401395</dc:identifier>
  <dc:identifier>oai:zenodo.org:401395</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/637422/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.603106</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/tut-arg</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:subject>computational auditory scene analysis</dc:subject>
  <dc:subject>sound event detection</dc:subject>
  <dc:subject>audio</dc:subject>
  <dc:subject>rare events</dc:subject>
  <dc:title>TUT Rare sound events, Development dataset</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
1,854
28,503
views
downloads
All versions This version
Views 1,8541,854
Downloads 28,50328,503
Data volume 27.3 TB27.3 TB
Unique views 1,5181,518
Unique downloads 3,7413,741

Share

Cite as