Dataset Open Access

TUT Rare sound events, Development dataset

Diment, Aleksandr; Mesaros, Annamaria; Heittola, Toni; Virtanen, Tuomas


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.401395</identifier>
  <creators>
    <creator>
      <creatorName>Diment, Aleksandr</creatorName>
      <givenName>Aleksandr</givenName>
      <familyName>Diment</familyName>
      <affiliation>Tampere University of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Mesaros, Annamaria</creatorName>
      <givenName>Annamaria</givenName>
      <familyName>Mesaros</familyName>
      <affiliation>Tampere University of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Heittola, Toni</creatorName>
      <givenName>Toni</givenName>
      <familyName>Heittola</familyName>
      <affiliation>Tampere University of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Virtanen, Tuomas</creatorName>
      <givenName>Tuomas</givenName>
      <familyName>Virtanen</familyName>
      <affiliation>Tampere University of Technology</affiliation>
    </creator>
  </creators>
  <titles>
    <title>TUT Rare sound events, Development dataset</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>computational auditory scene analysis</subject>
    <subject>sound event detection</subject>
    <subject>audio</subject>
    <subject>rare events</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-03-21</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/401395</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.603106</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/tut-arg</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;TUT Rare Sound events 2017, development dataset consists of source files for creating mixtures of rare sound events (classes baby cry, gun shot, glass break) with background audio, as well a set of readily generated mixtures and recipes for generating them.&lt;/p&gt;

&lt;p&gt;The &amp;quot;source&amp;quot; part of the dataset consists of two subsets:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;background recordings from 15 different acoustic scenes,&lt;/li&gt;
	&lt;li&gt;recordings with the target rare sound events from three classes, accompanied by annotations of their temporal occurrences,&lt;/li&gt;
	&lt;li&gt;a set of meta files providing the cross-validation setup: lists of background and target event recordings split into training and test subsets (called &amp;quot;devtrain&amp;quot; and &amp;quot;devtest&amp;quot;, respectively, indicating they are provided as the development dataset, as opposed to the evaluation dataset released separately).&amp;nbsp;&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;The mixture set consists of two subsets (training and testing), each containing ~1500 mixtures (~500 per target class in each subset, with half of the mixtures not containing any target class events).&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;The collection of the background recording data has been financially supported by European Research Council under the European Unions H2020 Framework Programme through ERC Grant Agreement 637422 EVERYSOUND.&lt;/p&gt;</description>
    <description descriptionType="Other">The license terms are specified in the LICENSE.txt file.</description>
    <description descriptionType="Other">{"references": ["Annamaria Mesaros, Toni Heittola, Aleksandr Diment, Benjamin Elizalde, Ankit Shah, Emmanuel Vincent, Bhiksha Raj, and Tuomas Virtanen. DCASE 2017 challenge setup: tasks, datasets and baseline system. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017), pp 85\u201392. November 2017."]}</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/637422/">637422</awardNumber>
      <awardTitle>Computational Analysis of Everyday Soundscapes</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
1,854
28,503
views
downloads
All versions This version
Views 1,8541,854
Downloads 28,50328,503
Data volume 27.3 TB27.3 TB
Unique views 1,5181,518
Unique downloads 3,7413,741

Share

Cite as