Dataset Open Access

DeepScoresV2

Tuggener, Lukas; Satyawan, Yvan Putra; Pacha, Alexander; Schmidhuber, Jürgen


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>The DeepScoresV2 Dataset for Music Object Detection contains digitally rendered images of written sheet music, together with the corresponding ground truth to fit various types of machine learning models. A total of 151 Million different instances of music symbols, belonging to 135 different classes are annotated. The total Dataset contains 255,385 Images. For most researches, the dense version, containing 1714 of the most diverse and interesting images, is a good starting point.&nbsp;</p>\n\n<p>The dataset contains ground in the form of:</p>\n\n<ul>\n\t<li>Non-oriented bounding boxes</li>\n\t<li>Oriented bounding boxes</li>\n\t<li>Semantic segmentation</li>\n\t<li>Instance segmentation</li>\n</ul>\n\n<p>The accompaning paper <em>The DeepScoresV2 Dataset and Benchmark for Music Object Detection </em>published at ICPR2020 can be found here:</p>\n\n<p><a href=\"https://digitalcollection.zhaw.ch/handle/11475/20647\">https://digitalcollection.zhaw.ch/handle/11475/20647</a></p>\n\n<p>&nbsp;</p>\n\n<p>A toolkit for convenient loading and inspection of the data can be found here:</p>\n\n<p><a href=\"https://github.com/yvan674/obb_anns\">https://github.com/yvan674/obb_anns</a></p>\n\n<p>Code to train baseline models can be found here:</p>\n\n<p><a href=\"https://github.com/tuggeluk/mmdetection/tree/DSV2_Baseline_FasterRCNN\">https://github.com/tuggeluk/mmdetection/tree/DSV2_Baseline_FasterRCNN</a></p>\n\n<p><a href=\"https://github.com/tuggeluk/DeepWatershedDetection/tree/dwd_old\">https://github.com/tuggeluk/DeepWatershedDetection/tree/dwd_old</a></p>\n\n<p>&nbsp;</p>\n\n<p>&nbsp;</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "ZHAW Datalab & USi", 
      "@type": "Person", 
      "name": "Tuggener, Lukas"
    }, 
    {
      "affiliation": "ZHAW Datalab", 
      "@type": "Person", 
      "name": "Satyawan, Yvan Putra"
    }, 
    {
      "affiliation": "TU Wien", 
      "@type": "Person", 
      "name": "Pacha, Alexander"
    }, 
    {
      "affiliation": "The Swiss AI Lab IDSIA (USI & SUPSI)", 
      "@type": "Person", 
      "name": "Schmidhuber, J\u00fcrgen"
    }
  ], 
  "url": "https://zenodo.org/record/4012193", 
  "datePublished": "2020-09-02", 
  "version": "2.0", 
  "@type": "Dataset", 
  "keywords": [
    "Music Object Regognition", 
    "Deep Learning", 
    "Object Detection", 
    "OMR", 
    "DeepScores", 
    "Deep Scores"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/223872c1-0f67-437a-b2f6-23de9ae7710b/ds2_complete.tar.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/223872c1-0f67-437a-b2f6-23de9ae7710b/ds2_dense.tar.gz", 
      "encodingFormat": "gz", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.4012193", 
  "@id": "https://doi.org/10.5281/zenodo.4012193", 
  "workFeatured": {
    "url": "https://www.micc.unifi.it/icpr2020/", 
    "alternateName": "ICPR2020", 
    "location": "Milan, Italy", 
    "@type": "Event", 
    "name": "25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION"
  }, 
  "name": "DeepScoresV2"
}
590
1,807
views
downloads
All versions This version
Views 590590
Downloads 1,8071,807
Data volume 116.6 TB116.6 TB
Unique views 492492
Unique downloads 464464

Share

Cite as