Dataset Open Access
Constantinos Patsakis;
Fran Casino
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.4010620</identifier> <creators> <creator> <creatorName>Constantinos Patsakis</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4460-9331</nameIdentifier> <affiliation>University of Piraeus</affiliation> </creator> <creator> <creatorName>Fran Casino</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4296-2876</nameIdentifier> <affiliation>University of Piraeus</affiliation> </creator> </creators> <titles> <title>Exploiting Statistical and Structural Features for the Detection of Domain Generation Algorithms</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>DGAs</subject> </subjects> <dates> <date dateType="Issued">2020-09-01</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4010620</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4010619</relatedIdentifier> </relatedIdentifiers> <version>1.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This repository contains a&nbsp;dataset for the research of domain generation algorithms (DGAs) and machine learning. More precisely, it targets dictionary-based DGAs.</p> <p><em>Constantinos Patsakis, Fran Casino: &quot;Exploiting Statistical and Structural Features for the Detection of Domain Generation Algorithms&quot;,&nbsp;Journal of Information Security and Applications, 2021.</em></p> <p>Features ordered as in the shared dataset:</p> <ul> <li>Family: DGA that the domain belongs to</li> <li>SLD: SLD of the Domain</li> <li>L-LEN: The length of Domain</li> <li>L-DIG: The number of digits in Domain</li> <li>L-CON-MAX: The maximum number of consecutive consonants Domain</li> <li>R-CON-VOW: Number of consonants divided by L-LEN&nbsp;</li> <li>L-SYM: The number of special characters</li> <li>R-SYM-LEN: L-SYM divided by L-LEN</li> <li>R-Dom-3G: Ratio of benign grams in Dom-3G</li> <li>R-Dom-4G: Ratio of benign grams in Dom-4G</li> <li>R-Dom-5G: Ratio of benign grams in Dom-5G</li> <li>L-W2: Number of words with more than 2 characters in Domain</li> <li>L-W3: Number of words with more than 3 characters in Domain</li> <li>R-WS-LEN: Dom-WS divided by L-LEN</li> <li>R-WDS-LEN: Dom-WDS divided by L-LEN</li> <li>R-W2-LEN: Dom-W2 divided by L-LEN</li> <li>R-W3-LEN: Dom-W3 divided by L-LEN</li> <li>M2-Dom-Ws: 2-Chain Markov English grams applied to Dom-WS</li> <li>M2-Dom-WDS: 2-Chain Markov English grams applied Dom-WDS</li> <li>E-Dom-WS: Entropy of Dom-WS&nbsp;</li> <li>E-Dom-WDS: Entropy of Dom-WDS</li> <li>E-Dom-W2: Entropy of Dom-W2</li> <li>E-Dom-W3: Entropy of Dom-W3</li> </ul></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/832735/">832735</awardNumber> <awardTitle>Lawful evidence collecting and continuity platform development</awardTitle> </fundingReference> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780498/">780498</awardNumber> <awardTitle>Cybersecurity Awareness and Knowledge Systemic High-level Application</awardTitle> </fundingReference> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/830929/">830929</awardNumber> <awardTitle>Cyber Security Network of Competence Centres for Europe</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 134 | 134 |
Downloads | 11 | 11 |
Data volume | 574.4 MB | 574.4 MB |
Unique views | 109 | 109 |
Unique downloads | 11 | 11 |