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Abstract 

Direct metal laser sintering, an additive manufacturing technique, has a huge growing demand in industries like 

aerospace, biomedical, and tooling sector due to its capability to manufacture complex parts with ease. Despite many 

technological advancements, the reliability and repeatability of the process is still an issue. Therefore, there is a 

demand for in-line automatic fault detection and post-processing tools to analyze the acquired in-situ monitoring data 

aiming to provide better quality assurance to the user. 

This study focuses on the treatment of the data obtained using the EOSTATE Optical Tomography monitoring system. 

A balanced dataset is obtained with the help of computer tomography of the certified part (Stainless Steel CX 

cylindrical samples), through which a feature matrix is prepared, and the layers of the part are classified either having 

-drift . The model is trained with the feature matrix and tested on benchmark parts (Maraging Steel) 

and on an industrial part (knuckle, automotive part) manufactured in AlSi10Mg. The proposed semi-supervised 

approach shows promising results for presented case studies. Thus, the semi-supervised machine learning approach, 

if adopted, could prove to be a cost-effective and fast approach to post-process the in-situ monitoring data with much 

ease. 

Keywords: Direct Metal Laser Sintering, Quality Assurance, In-situ Monitoring, Machine Learning, Semi-

supervised Learning, Optical Tomography; 
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1. Introduction 

According to ISO/ASTM 52900 process of joining materials 

to make parts from the 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative 

manufacturing methodologies  [1]. Additive manufacturing (AM) has enormous potential in aerospace, medical, and 

automotive industries due to design and material flexibility. Nowadays, AM technology used for not only prototyping 

but also small batch production with improved repeatability and reliability. According to the Wohlers Report, the 

market of AM manufactured parts has grown to $2.9 bn as compared to $2.1 bn in 2016 [2]. In recent years, growing 

demand for AM parts pushed for industrial development for better quality assurance and monitoring of the process. 

Therefore, it is viable to implement an in-situ monitoring and feedback control loop to control the process for better 

reliability and part quality [3]. Apart from the process monitoring, there are several other advantages of these 

monitoring systems, such as no significant effect on the overall printing time, no need for post-analysis of the part 

using expensive techniques like CT/µCT.  Even though the advancements in the monitoring systems using high 

precision sensors such as photodiodes, high-speed infrared cameras, and pyrometers, anomaly detection during the 

process is still a challenge. As the final quality of the part depends on hundreds of controllable factors (machine 

parameters, process parameters) starting from powder morphology but can also be influenced by uncontrollable factors 

such as non-uniformity of powder bed due to failure of recoater, failure of part due to high residual stresses [4]. Also, 

another motivation for better monitoring systems is in the biomedical and tooling sector, where every part printed is 

different, so it is complicated to have a reference part for comparison, unlike in case of automotive and aerospace 

sectors. Furthermore, the different geometrical features such as overhang, sharp corners, down-skin, and up-skin are 

also critical as they create variability of the measured signals [5-6]. One of the challenges that existing commercial 

in-situ monitoring systems pose is the generation of the enormous size of the data, which is very difficult to store and 

analyze. For example, for a batch of 10 mm height cylindrical samples, a data of 100 GB is being generated. Therefore, 

the need for a fast and easy approach to post-process the data and easy detectability of drift is inevitable. Thus, the use 

of machine learning techniques in the AM process has increased in the last few years. 

This paper specifically focuses on Laser Powder Bed Fusion (L-PBF), which is one of the metal AM techniques,  

also known as Direct metal laser sintering (DMLS) and Selective laser melting (SLM). The monitoring system 

acquires data through an off-axis Infra-red camera-equipped installed in the EOS M290 machine, where bandpass 

filters are used to monitor the melt pool radiations eliminating the reflected laser radiations. Establishing the link 
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between the acquired data and part quality is a challenging task. However, in recent years many researchers have used 

machine learning algorithms and computer vision techniques on large datasets for decision making [7-8]. Grasso et 

al. [9],  detected the over melting via a statistical comparison between layer-wise emitted light intensity profiles. Some 

studies have also linked the statistical descriptors of spatters (spatter count and size) and vapor plume with the 

processing parameters and their influence on flaw formation during printing [10-11]. Khanzadeh et al. [12] proposed 

supervised learning based model to predict the porosity. The pattern from the individual melt pool images is extracted 

to predict the probability of class labels. Recently, Okaro et al. proposed another perspective of the ML approach for 

data treatment and predicted the quality of the parts based on their mechanical property as a descriptor. Key features 

were extracted from the photodiode signals, and a semi-

Model-Expectation-Maximization (GMM-

based on the ultimate tensile strength of the tensile bars. This approach showed the possibility for automatic 

certification of the L-PBF parts based on their mechanical properties. But Okaro et al. method does not illustrate any 

possibility to detect the defects in the parts, which is the cause for inferior mechanical properties [13]. Whereas, Scime 

et al. [14] studied the flaw detection using the powder bed layer images. They correlated the effect of the bad powder 

layer on the final part quality using a computer vision (CV) algorithm. Therefore, ML approaches can be promising 

steps to certify the quality of the final parts. It can be used as an additional verification step with currently used 

techniques such as computer tomography. 

In this work, a commercially available EOSTATE Exposure Optical Tomography (OT) module installed on EOS 

M290 is used for in-situ monitoring. The acquired in-situ data is post-processed to check for drift layers in an 

automotive part and benchmark part using a machine learning (ML) based classification approach.  The drift  

is classified based on the localized hotspots being generated due to localized variation in melt pool signatures in a 

particular layer of the part, which significantly affects the final part quality. Any ML problem, in theory, can be 

broadly classified into two categories: (I) supervised and (II) unsupervised. In a supervised ML approach, a set of 

labeled data is used to train the classifier, and the trained classifier is used to predict the outcome of unlabeled data. 

In contrast, an unsupervised approach is used to ascertain labels through correlations/patterns in unlabeled data and is 

explicitly dependent on the distinction in the dataset. Unsupervised learning is also helpful for labeling the unknown 

data or can be used to organize the data in clusters, anomaly detection, or association. A more detailed explanation 

about these approaches could be found in the literature [15-16]. However, there exist an ML approach, which utilizes 
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-supervised learning 

-supervised learning approach exists since, in many real-world applications, one cannot directly 

apply either a supervised or unsupervised as the availability of a fully labeled dataset is scarce [17]. The main principle 

behind a semi-supervised ML approach is that an unsupervised learning approach is first applied to the unlabeled 

dataset to obtain initial labels, and to obtain learning parameters like suitable distance metric, .etc. Then the newly 

labeled data is used to train a supervised learning approach based classifier, a similar approach could be found in the 

literature [18-20]. This hybrid pipelined approach is beneficial for applications such as additive manufacturing, where 

getting labeled data is a challenge. 

In this study, we propose a semi-supervised learning-based approach to post-process and detect the drift in the 

acquired in-situ OT data. Firstly, an unsupervised learning algorithm (K-means clustering) is used to expand the 

available limited labeled dataset and finding the best-suited distance matric to generate a training dataset. Secondly, a 

supervised learning-based classification algorithm (k-nearest neighbor) is trained with the labeled dataset (obtained 

from -means clustering) and tested with real case studies. In this study, the in-situ monitoring dataset is treated as a 

binary classification problem, and the labeled -

possibility of drift in a particular layer. The following points signify the important contributions of this paper: 

 A decision on the training features from the dataset based on the histogram mapping of the layer-wise OT data 

and validated with CT data. 

 Use of K-means clustering for labeling a limited labeled dataset based on the selected data features. The cross-

validation with CT data is performed to decide the suitable distance metric and other classification parameters. 

 Use of the labeled data to train/test a k-nearest neighbor (k-NN) classifier and judge its accuracy. 

 The application of the trained k-NN classifier, on case studies of complex geometry parts and cross-validation 

of k-NN results using the EOSTATE Exposure OT analysis tool. 

2. Definitions 

 Hot spot: The local areas with high light intensity compared to the rest of the layer. These hotspots areas 

indicate the highest probability of defect occurrence in the final part. 

 Drift: The drift layer is an indication of the presence of the hotspots in a particular layer. If the local hotspots 

are present in the layer, the whole layer is termed as the ft layer  
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 No-Drift:  the non-existing -

drift layer.  

 Feature: In machine learning, a feature is a measurable property that can be quantified and recorded. Features 

are extracted from the input data in a way to simplify the classification task. In our application, the mean and 

median are the feature extracted from each layer  image.  

 Feature matrix: A  dimensional matrix, where  is the number of data, and  is the number of features. 

In other words, a feature matrix contains  number of  dimensional feature row vectors. 

 Balanced dataset: A dataset having an equal number of layers for each label - . 

3. Background and methods 

This section confers the theoretical explanation for the used ML algorithms and in-situ monitoring systems used 

for monitoring the process. In later sections, the link with our work will be established. 

3.1. In-situ monitoring techniques 

Despite many technological advantages in AM over conventional manufacturing techniques like casting, 

machining, etc., the process capability still represents a major limitation to their industrial breakthrough. The 

certification standards for AM parts are still under development, and process stability is a major concern for many 

risk-averse industries [21]. Therefore, in recent years, both researchers and machine manufacturers have shifted their 

focus on developing more reliable monitoring systems to monitor the process stability and detect the possible drifts 

during the process. Thus, it led to the development of different monitoring systems such as layer control system, which 

is mainly dedicated to powder bed spreading, laser power control, melt pool monitoring, acoustic methods, and 

ultrasonic methods [22-23]. In this study, we will focus on melt pool monitoring systems, which mainly rely on the 

detection of electromagnetic radiation from the melt pool. In-situ monitoring systems can be categorized into two 

classes principally based on their layout in the machine: Coaxial/On-axis systems and Off-axis systems.  

The co-axial monitoring systems monitor the optical path during printing using high precision sensors such as 

photodiodes, high-speed cameras, and pyrometers, [23]. The spectral sensitivity of these systems varies from 

manufacturer to manufacturer, but most of the systems have spectral detection range in the near-infrared region. A 

bandpass filter is used to eliminate the detection of radiation from the visible spectrum and laser backscattering from 
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the build chamber. Pavlov et al. [24] used on-axis 

respectively, to monitor the temperature of the laser spot while printing. The relation between photodiode 

signal response and process parameters such as layer thickness, hatch distance, and scan strategies established. 

Berumen et al. [25] studied the heat accumulation correlation with the varying layer thickness, sharp contours, and 

overhang structures using an on-axis photodiode with a spectral range of 780 nm up to 900 nm.  

In contrast to on-axis systems, the off-axis systems are spatially stationary to laser and do not follow the optical 

path. For example, Kleszczynski et al. [26-27] studied variation on volumetric energy during printing using off-axis 

high-resolution CCD camera. The sensors are placed outside the optical path and have stationary field of view i.e. the 

whole build plate. Therefore, the geometric correction factor is always applied to the acquired images [28-30]. In our 

study, we will be post processing the data from the off-axis sCMOS camera. 

It is imperative to illustrate that the sensitivity of these systems depends on various factors, such as process 

parameters, material, and other unwanted factors. For a more detailed review of various in-situ monitoring systems, 

interested readers can refer to reference [23]. Some of the commercially available melt pool monitoring systems are 

listed in Table 1. 

 

Table 1: List of commercially available monitoring systems. 

 

Manufacturer Product  On/Off axis Sensors 

SLM Solutions Melt pool monitoring (MPM) On-axis Two photodiodes 

EOS GmbH EOSTATE On  and Off-axis Photodiode and high-speed 

sCMOS camera 

Renishaw MeltVIEW On-axis Photodiode 

Concept GE QM melt pool On-axis Infra-red camera and photodiode 

Stratonics ThermaVIZ Off-axis CMOS camera 

3D Systems DMP monitoring Off-axis Infrared camera and photodiode 

Plasmo - On-axis Infrared camera and photodiodes 
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3.2. Machine learning 

The field of machine learning is concerned with the question of how to construct computer programs that 

automatically improve with experience. In this section, we will define through mathematical modelling the machine 

learning algorithms utilized in this work. 

3.2.1. K-means clustering 

K-means clustering or  [31] is one of the most widely studied unsupervised machine learning 

algorithms in the literature. It is an iterative partitional clustering algorithm that divides n data/feature samples into K 

disjoint clusters that minimize the squared error criterion, and each cluster is characterized through a centroid. It is 

important to note that the initial centroid seeds play an important role in K - means clustering algorithm, as different 

initial centroids can provide different results [32]. We have utilized K-means++ algorithm [33]  to choose initial 

centroid seeds which achieve faster convergence to a lower sum-of-squares point-to-cluster-centroid distance than 

 but offers no guarantees of optimality. The parameter K (i.e., number of clusters) is apriori selected, 

which in our case is 2. The iterative steps for K-means ++ algorithm are mentioned in the flow graph shown in Figure 

1. 

Let us define a  dimensional dataset/feature matrix  with  samples, and the set of K 

centroids be , where x and c are necessarily represented points on an m-dimensional plane. The 

steps used to implement the K-means++ algorithm are as follows: 

1. Select an observation  uniformly at random from the dataset/feature matrix, . The chosen observation is 

the first centroid denoted as . 

2. Denoting the distance from an ith data point  to jth centroid  as  Now we compute distances from 

each observation to , i.e., .  

3. Now we choose the next centroid  with a probability of   . This step implies if the data point 

 is near to centroid the likelihood of to become centroid would be negligible. 

4. We now repeat step 3 until all initial K centroids get assigned, i.e., . 

5. Now for each , set the cluster  to be the set of data/feature points in  that are closer to  

then they are to , . 
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6. Now for each , update the centroid  to be the center of mass of all data points in , i.e., 

. This process is equivalent to calculate a mean, and hence the name K-means clustering. 

7. Now iteratively repeat steps 5 and 6 until cluster assignments do not change. 

 

In K-means clustering, the distance metric  plays an important role, and in the literature, various distance metric has 

been suggested, e.g., Euclidean, correlation, cosine, and city block distance. In our work, we have experimented with 

various distance metrics to find the most suitable one for our application.  

3.2.2. -Nearest Neighbor Classifier 

The -nearest neighbor (k-NN) is a supervised learning classification algorithm, which is one of the most studied 

classifiers in the literature, and even with a simplistic formulation, it has a performance at par the most complex 

classifier available [34]. The k-NN learning algorithm requires labeled training data, and a predefined value of the 

Start 

Choose an intial centeroid  uniformly at random from 
dataset/feature matrix D. 

Compute the distance d(xm,c1) between feature/data m and c1 

Select the next centroid c2 from dataset X based on probability given by  

Repeat until a 
total of K 
centres chosen. 

For each i  {1, . . . , k}, set the cluster Ci to be the set of points in X that are closer to ci

than they are to cj for all  

For each i  {1, . . . , k}, set ci to be the center of mass of all points in Ci : 

 

Repeat until 
centroid no 
longer changes 

Figure 1: Working principle of K-means ++  algorithm. 
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number of nearest neighbors parameter k, which is used by the classifier to find k-nearest neighbors to a query data 

(unclassified data), based on a distance metric. The k-nearest neighbors can have different classes, and the algorithm 

predicts the class of the query data as the majority class of nearest neighbors. Let  

denote the training set, with  samples and  is a -dimensional training feature vector have a known class 

label  . 

A query data,  be an -dimensional vector of data or features, to which a label  will be assigned. Now let 

 for , denotes the set of k-nearest neighbors based on a distance metric and based on the 

majority class of  ,  will be assigned a label, i.e.,  

where  is a Kronecker delta function.  

3.2.3. Distance Metrics 

 

As both the supervised (k-NN), as well as unsupervised (K-means) learning algorithms, rely on a distance metric, in 

this section, we mathematically define them. For any two points in an m-dimensional space, the Euclidean 

distance can be defined as, 

, 

City Block distance as 

Cosine distance as 

and Correlation distance as 
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where  and . 

4. Experimental procedure 

4.1. In-situ monitoring module 

For our study, we used the EOSTATE melt pool monitoring module installed on EOS M290 for which the 

schematic diagram is shown in Figure 2. The optical tomography (OT) comprises an off-axis scientific 

Complementary metal-oxide-semiconductor (sCMOS) camera with a spectral detection range in the near infrared 

region (NIR). Usually, the radiation from the build chamber consists of three components, i.e., backscattered laser 

(1064 nm), plasma radiations due to evaporation and ionization of gases (400-600 nm) and thermal emissions which 

range from visible (380-780 nm) to near-infrared (~1400 nm) spectrum [35]. Since the part quality mainly depends 

 

Figure 2: Schematic diagram of the EOSTATE exposure module. 

Laser 

Dichoric mirror 

sCMOS Camera 

Scanner EOSTATE Exposure OT 

Build Plate 
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on the thermal emissions from the melt pool, so other wavelength radiations are eliminated by installing a bandpass 

filter (the type of bandpass filter cannot be relieved due to the machine provider confidentiality clause) in front of the 

camera. The OT system has a camera resolution of 2560 x 2160 pixels, which allows achieving a spatial resolution of 

125 µm/pixel across the entire build platform. The OT system has a frame rate of 10 frames per second. At the end of 

every scanned layer, all the images are superimposed, and a holistic picture for the whole layer is saved in a 16 bit 

TIFF single image. The final image of the particular layer represents the process map that can be correlated with the 

emitted light intensity by the process. Due to non-centralizing position of the camera, the geometric correction was 

applied to the images via software. 

4.2. Materials and methods 

In our study, a total of 18 Stainless Steel CX cylindrical samples with a diameter of 10 mm and a height of 15 mm 

were printed on EOS M290. The input volumetric energy density was varied over a range to prepare a dataset of 

certified samples that would be used further for training and verification of the model. The deliberately varied process 

parameters induce drift during the process which results in varied porosity level in the parts. The optimized printing 

process parameters are summarized in Table 2. The laser power and laser scan speed were varied ± 30 % from the 

optimized processed parameters tabulated in Table 2. Also, the layer thickness was varied to 30, 60 and 90 µm. It is 

worth noting that the possibility of having drift due to bad powder layer spreading is not taken into account for this 

study. To prepare a labeled dataset for training, computed tomography was performed on printed samples for analysis 

using an X-ray inspection system for determining pores with a 180 kV microfocus tube and an area detector with a 

voxel size of 19 or 22.5 microns. The smallest evaluated pore has a volume of 5 voxels. For testing the supervised 

learning classifier, two case studies were chosen, which are: an 

(Figure 3). The automotive part knuckle  is printed with AlSi10Mg, and 

benchmark part is printed with Maraging steel. The knuckle  and overhang part  as a case study 

because the location of the overheating failure in these parts was detectable via visual inspection.Thus we made the 

choice not to carry out CT scan for this first study. The analysis tool from EOS can indeed detect cold and hotspots, 

which are treated as areas of having the highest probability of finding a defect in the final part. EOSTATE Exposure 

OT analysis tool is then used for cross-validation of results obtained from the supervised learning approach for the 

presented case studies. 
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Table 2: Process parameters for the printing.

Material Power (W) Scanning speed 

(mm/s) 

Hatch distance (µm) Layer thickness (µm) Energy density 

(J/mm3) 

Stainless Steel CX 260 1000 100 30 80 

 

4.3. Image analysis 

Clijsters et al. [37] used a co-axial setup (CMOS camera and photodiode in NIR range) to capture the melt pool 

signatures such as melt pool area and intensity to monitor the quality of the SLMed parts. Clijsters et al. prepared a 

dataset based on the melt pool area and intensity for different scan vectors such as fill scan and contour scan. It is 

presented that the heat transfer depends mainly on the environment of the melt pool: the heat flux is higher when the 

metal pool is surrounded by printed material than when it is surrounded by powder. For each of these classes (fill scan 

and contour scan), a confidence interval was defined, and errors were detected based on the defined confidence 

interval. The proposed method was studied for small cube structures. However, in our study, we also noticed such a 

confidence window based on mean and standard deviation could not be defined for complex and real case parts. To 

3 (a) for part 

geometry) are plotted in Figure 4. It can be observed that the mean and standard deviation are dependent on the printed 

area of each layer and changes with the shape of the complex part. Therefore, the global threshold limit based on the 

Figure 3. The CAD design of  (a) An automotive steering knuckle (3d printed within the framework of the European 
project Maestro [36]), the length of this part is approximately 500 mm, only a section was 3D printed, (b) benchmark 
used to determine the critical overhanging angle in additive manufacturing processes. 
 

(a) (b) 

125 mm 125 mm 
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mean and standard deviation cannot be applied for the complex geometries, and thus the ML is suitable approach for 

post processing of in-situ data. For training our ML classifier, it is then required to select suitable features from the 

given dataset. 

Preprocessing of the OT images is a necessary step before feature extraction and further ML processing. As the OT 

image captures the whole build plate, the specific part region is cropped. The removal of the background from the 

cropped part images is performed based on a suitably selected intensity threshold. Through a preliminary statistical 

analysis performed on individual image layers, it was observed that the mean and the median of the corresponding 

images increase significantly due to the presence of hotspots in the thermal images when compared to the cases of 

absence (Figure 5). The presence of localized hotspots in the layer is due to local variation in the melt pool shape and 

size. The localized variation in melt pool signatures can be influenced by the localized variation in powder bed 

spreading or process parameters. The more hotspots there are in the images, the highest probability of drift. For 

example, Zenzinger et al. [35] demonstrated the link between the hotspots in OT images to the defect in the µCT scan 

of the layer. Recently, Mohr et al. [38] also studied the OT images to detect a defect in the final part and compared 

the OT images with the µCT images. It is also verified that the hotspots in the OT images link to defect in the final 

part. 

For example, Figure 5(a), represents the layer image without any hotspots, verified with CT image as well (Figure. 

5(b)) and, another image with hotspots (marked by red circles) is shown in Figure 5(c). The corresponding CT image 

with the porosity (marked by red circles) is also shown in Figure 5(d). On comparing the histogram of images in both 

Figure  
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scenarios, the histogram of the image, which represents a probable drift layer (layer with hotspots is termed as drift 

layer), shows a right shift when compared to the image of the layer with no possible drift (layer without hotspots). 

The right shift in the histograms is due to the presence of hotspots, which leads to higher mean in the layer compared 

to no drift layer (see Figure 5(c)). 

As the relative value of the mean and median of the image pixels can describe the degree of right/left shiftiness of 

the histogram, based on these observations, we decided on the mean and median being the features of choice for 

training and testing the classifier. The flowchart of the feature extraction procedure is shown in Figure 6. 
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Original CT image 

(d) (c) 

Figure 5: Example picture of  (a) OT image without hotspots , (b) CT image of corresponding layer (a) without hotspots, (c) OT 
image with hotspots , (d) CT image of corresponding layer (c) with hotspots, and (e) histogram comparison between (a) and (c). 
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4.4. Semi-supervised Learning Approach

4.4.1. Initial data labelling and Suitable Distance Metric Selection through -means clustering algorithm 

Another essential aspect of ML algorithm like -means and -NN is the distance metric. As discussed previously in 

Section 2.2.3, there are many distance metrics already proposed in the literature, but for a particular application, only 

a few will suit. In this section, we discuss the initial labelling - choose the 

suitable distance metric for our application based on the experimentation done on the certified dataset.  

Due to the complex nature of the DMLS process, obtaining the labeled dataset in an automated fashion is a challenging 

task. Therefore initially, a labeled dataset of 40 layers (20 layers of each label, i.e., -drift  from a set 

of 14 Stainless Steel CX cylindrical samples were prepared manually

-

(see Figure 5). However, the resolution difference between OT and CT images hinders a direct visual comparison of 

all the images. Thus, it is not possible to label and prepare a large dataset manually. Therefore, in this case the 

unsupervised algorithm -means clustering come to the rescue and is used to automate the task of labelling. As seen 

in comparison with CT data, it can be concluded that a higher number of OT hotspots results in a higher probability 

of having a real defect in that layer. Based on this hypothesis, a dataset of another 200 unlabelled layers is prepared 

such that it comprises an approximately equal number of - Nevertheless, it shall be noted 

that it does not mean that every image with an OT indication will lead to a real defect in the printed layer due to the 

repetitive nature of printing of the DMLS process, as the existing defect in the previous printed layer may be resolved 

in the next printing scan. 

Next, the 40 labeled layers and 200 unlabelled layers were mixed up to perform a cluster analysis. We extract  

features (mean and median) of each layer image, and a total of   feature vectors were formed, resulting in a 

feature matrix  of dimension . The clustering parameter  (as the data has to be divided into two 

clusters) and maximum iterations to 1000 was set. The clustering process is repeated 5 times using new initial cluster 

Extract 16 bit 
TIFF images 
from OT 

Crop the specific 
part from the 
build plate 

Removal of 
background from 
the part image 
using intensity 
difference 

Create feature 
matrix based on 
the preprocessed 
images  

Figure 6: Flowchart for extraction of features from the OT pictures. 
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centroid positions/seeds. The final clustering solution will be the one having the lowest sum of points to centroid 

distance (ref. Section 3.2.1). The accuracy of -means algorithm cluster assignments is cross-validated with the 

initially labeled  labeled samples utilizing multiple distance metrics, and the Correlation distance metric shows the 

maximum validation accuracy. The high validation accuracy also indicates that the selection of mean and median as 

- The cluster assignment using different 

distance metrics on the expanded dataset is shown in Figure 7. The validation accuracies of the different distance 

metrics are listed in Table 3. Based on the highest percentage accuracy achieved through the -means method, we 

choose the correlation distance as the suitable distance metric for our application and finalize the resultant labels for 

training further a supervised learning-based classifier, i.e., -NN classifier. 

  

 

 

 

 

S. No. Distance Algorithm Accuracy (%) 

1. Cosine 85.00 

2. Squared Euclidean 82.50 

3. City Block 85.00 

4. Correlation 100.00 

Table 3: Performance of the different distance metrics on certified data. 
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Figure 7: Clustering using (a) correlation, (b) cosine, (c) city block, and (d) squared Euclidean distance metrices.  
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4.4.2. Number of nearest neighbour parameter selection for -NN classifier 

After identifying the suitable distance metric, the next important step is to prepare a balanced training dataset (dataset 

with an equal number of data of each label) to train a -NN classifier (a supervised machine learning algorithm). It is 

imperative to prepare a balanced dataset to avoid the biasing problem. Therefore, 100 data points for each label (total 

200) were chosen randomly from the dataset of 240, which resulted from the -means clustering. Although we 

p Class confidence weighting

imbalanced dataset is available [39-40]. The training dataset was divided randomly into a 70:30 ratio for preparing 

training and validation dataset. To find the best value for the number of nearest neighbors, i.e., , the accuracy of the 

trained -NN classifier with varying  was tested on the validation set, which is also shown in Figure 8. The accuracy 

vs  graph plot suggests that a value of , can be chosen for the maximum classification accuracy. As 

choosing a large value of  results in the increase of computational complexity of -NN classifier, we choose the 

minimum indicative value . The overall working pipeline of our semi-supervised learning model is depicted in 

Figure 9. 

Figure 8: Accuracy versus  plot for the -NN classifier. 
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5. Results and discussions 

Testing on certified data 

In the experimental section, the stainless steel CX cylindrical samples were printed with different process parameters 

such as layer thickness, power, scanning speed, and hatch distance to generate a certified dataset for training the 

algorithm. The certification of the samples was done through a CT scan. A total of four certified cylindrical samples 

with CT porosities of 0.0033 %, 0.0054 %, 4.3967 %, and 0.1436 % were chosen for testing the trained k-NN classifier. 

It should be noted that the data of the four chosen cylinders were not used to train the classifier. The semi-supervised 

model predicted 20.82 %, 1.9543 %, 1.1363 %, and 0.4862 % layers sample with CT scan porosities 

of 4.3967 %, 0.1436 %, 0.0054 %, and 0.0033 %, respectively. The k-NN classifier-based test results indicate that the 

sample with CT scan porosity of 4.3967 % has the highest number of layers with hotspots, which is due to non-

optimized processing parameters. As the dataset size is limited, further comments on an analogy between porosity and 

drift detected (particularly at lower porosity levels) are out of the scope of this work. 

 

Extraction of 16-bit TIFF images from Optical Tomography 

Image pre-processing: Background removal and part extraction 

Feature extraction  

Initial data labelling and learning the suitable distance metric using K-means 

Training -NN classifier using labelled dataset  

Preparing new case study datasets 

Testing the dataset on trained -NN classifier 

Figure 9: Overall workflow model of the proposed semi-supervised model. 
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5.1. Case study: Benchmark part

We now apply our trained -NN classifier on the data obtained through real complex parts, and for that, we choose 

benchmark parts that are often used for material development in the industry. Out of different benchmark parts, 

ical parts which is shown in Figure 10.(a), which aims to find the critical overhang angle 

for a particular material that can be printed without the support structures. As we know, above a critical overhang 

angle, the support structures are used as an anchor to prevent the failure of the part. Therefore, it is vital to know the 

overhang angle for the optimization of process parameters for new material development in the DMLS process. The 

surety of the failure of the part at a particular overhang angle makes this part as a suitable candidate for our case study. 

As the location of the failure of this part is known and can be used as ground truth label. The OT images of the part 

exported and pre-processed as described in the previous sections and the feature matrix is prepared. As mentioned in 

the previous section, the k-NN classifier is already trained with labeled data of the certified part, and the predicted 

labels are shown in Figure 10.(b Figure 10.(c), the poor 

thermal conductivity due to a large overhang angle has led to the overheating drift in the layers numbered from1535 

to 1564. This hypothesis is validated by the EOSTATE Exposure analysis tool, which shows the presence of hotspots 

the results from the 

analysis tool as well. 

 

 

Figure 10: (a) CAD geometry, (b) Labels predicted by the k-NN model, and (c) printed part geometry with 
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5.2. Case study: Industrial case automotive steering 

11.(a) contains the scatter plot of 

resultant predicted . This classification is in 

correlation with the visual inspection of the part quality as well. As can be seen in Figure 11.(b), the topmost layers 

from layer number 7682 until 7764 of the part failed due to overheating. The reason for the failure of these layers is 

due to the lack of heat dissipation. This part acts as a good example to show the need for design optimization in AM 

as poor support structures lead to part failure. It was also be verified by the EOSTATE Exposure analysis tool that the 

overheating leads to hotspots in the captured images.  

 

Another optimized design knuckle was printed with optimized support structures for better heat dissipation. Figure 

12.(a) represents the predicted labels, and it shows that only 8 layers, which is due to 

presence of hotspots in the layers numbered from 6150 to 6158. This hypothesis is cross validated with the EOSTATE 

Exposure analysis tool, as shown in Figure 12.(c) which  shows the location of the hotspot in the layer number 6150. 

It shall be note that the hotspot continues to be present at the same location for next 8 layers (from layer number 6150 

to 6158) which is also predicted by the proposed K-NN approach. 

Figure 12.(b) is printed within the framework of the European Union project [36].  

 

 

Figure 11: (a) Labels predicted by the k-NN model, and (b) printed part geometry with overheated region. 
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The initial tests utilizing the proposed semi-supervised ML model is performed for three different parts, which were 

printed with different process parameters and different material (Benchmark part- Maraging Steel, Knuckle- 

AlSi10Mg). Therefore, it can be concluded that the proposed algorithm and feature extraction is independent of 

process parameters and material of the printed part.  

It is also to be noted that the OT is not sensitive to all kinds of defects that could occur during the printing process. As 

the DMLS process is very complex in terms of printing, there are hundreds of factors that could affect the quality of 

the final part. For example, Galy et al. listed all the different parameters that can influence the quality of the Al alloy 

parts during printing [41]. Therefore, it is challenging to monitor all the possible factors with optical tomography, and 

certification for quality assurance requires expensive techniques like a CT scan. However, the CT scan is a costly 

technique, and part size limitation makes it more difficult to use it for every part certification. Therefore, the proposed 

model based on ML can be used to select good parts for the further expensive post-processing techniques.  

6. Conclusion 

In-situ monitoring of the DMLS process can significantly improve the reliability of the whole process for quality 

assurance of the product. But there are few issues with the monitoring systems which need to be solved for fast and 

easy anomaly detection. Firstly, processing the enormous amount of unlabelled data obtained from these monitoring 

Figure 12: (a) Labels predicted by the k-NN model, (b) part geometry with drift layers (in bright color), and (c) 
location of the hot spot (marked in white color) in the drift layer. 
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systems is a huge challenge. Secondly, it is very laborious to detect the drift in the final part of the in-situ monitored 

data. Therefore, the use of ML algorithms for the treatment of in-situ monitoring data has merit. This paper is a 

continuation of the research going into the field of data treatment in additive manufacturing.  

The key contributions of this work are summarized as follows: 

 An unsupervised -means clustering algorithm was used to label the unlabelled data with the help of small 

set of labelled data and helps in choosing the most suitable distance matric. The accuracy of the algorithm 

was verified using the computer tomography-based certified data.   

 The labeled dataset was utilized to train the -NN classifier. The optimum value of number of nearest 

neighbors  was judged on the basis of accuracy vs  plot. 

 The semi- -

case studies and the cross-validated through the EOSTATE Exposure OT analysis tool. 

The future aim of this work is to study the possibility to detect the exact location of the drift in the specific layers and 

to check the reliability of this model for other complex parts/materials as well. The coupling with data from other 

sensors, such as photodiodes, must to be studied. The semi-supervised machine learning shows that machine learning 

in additive manufacturing can be a robust method to improve the post processability of the in-situ data. The final aim 

of this approach could be achieved by real-time monitoring of the whole process in a closed feedback control manner: 

if drift in the process is detected, different printing parameters could be used to avoid part failure. 
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