Journal article Open Access

Graph Coloring based Heuristic for Crew Rostering

László Hajdu; Attila Tóth; Miklós Krész


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4010497</identifier>
  <creators>
    <creator>
      <creatorName>László Hajdu</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1832-6944</nameIdentifier>
      <affiliation>University of Szeged, InnoRenew CoE and University of Primorska</affiliation>
    </creator>
    <creator>
      <creatorName>Attila Tóth</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1014-7965</nameIdentifier>
      <affiliation>University of Szeged, Hungary</affiliation>
    </creator>
    <creator>
      <creatorName>Miklós Krész</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7547-1128</nameIdentifier>
      <affiliation>University of Szeged, InnoRenew CoE and University of Primorska</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Graph Coloring based Heuristic for Crew Rostering</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>crew rostering</subject>
    <subject>graph coloring</subject>
    <subject>tabu search</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-08-19</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="issn">0324-721X</alternateIdentifier>
    <alternateIdentifier alternateIdentifierType="issn">2676-993X</alternateIdentifier>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4010497</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.14232/actacyb.281106</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/innorenew</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In the last years personnel cost became a huge factor in the financial management of many companies and institutions.The firms are obligated to employ their workers in accordance with the law prescribing labour rules. The companies can save costs with minimizing the differences between the real and the expected worktimes. Crew rostering is assigning the workers to the previously determined shifts, which has been widely studied in the literature. In this paper, a mathematical model of the problem is presented and a two-phase graph coloring method for the crew rostering problem is introduced. Our method has been tested on artificially generated and real life input data. The results of the new algorithm have been compared to the solutions of the integer programming model for moderate-sized problems instances.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/739574/">739574</awardNumber>
      <awardTitle>Renewable materials and healthy environments research and innovation centre of excellence</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
37
25
views
downloads
Views 37
Downloads 25
Data volume 8.8 MB
Unique views 34
Unique downloads 22

Share

Cite as