Journal article Open Access

On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials

Sergey Nazarenko, Avy Soffer, Minh-Binh Tran


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Sergey Nazarenko, Avy Soffer, Minh-Binh Tran</dc:creator>
  <dc:date>2019-08-23</dc:date>
  <dc:description>We derive a new kinetic and a porous medium equations from the nonlinear Schrödinger equation with random potentials. The kinetic equation has a very similar form with the 4-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread infinitely as time goes to infinity and this fact answers the 'weak turbulence' question for the nonlinear Schrödinger equation with random potentials positively. We also derive Ohm's law for the porous medium equation.</dc:description>
  <dc:identifier>https://zenodo.org/record/4009820</dc:identifier>
  <dc:identifier>10.3390/e21090823</dc:identifier>
  <dc:identifier>oai:zenodo.org:4009820</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/823937/</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>wave turbulence theory; nonlinear schrödinger equation with random potentials; 4-wave kinetic turbulence equation; ohm's law; porous medium equation.</dc:subject>
  <dc:title>On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
15
17
views
downloads
Views 15
Downloads 17
Data volume 3.2 MB
Unique views 13
Unique downloads 17

Share

Cite as