Journal article Open Access

On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials

Sergey Nazarenko, Avy Soffer, Minh-Binh Tran


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/4009820">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4009820</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/4009820"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sergey Nazarenko, Avy Soffer, Minh-Binh Tran</foaf:name>
        <foaf:givenName>Avy Soffer, Minh-Binh Tran</foaf:givenName>
        <foaf:familyName>Sergey Nazarenko</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:title>On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>wave turbulence theory; nonlinear schrödinger equation with random potentials; 4-wave kinetic turbulence equation; ohm's law; porous medium equation.</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/823937/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-08-23</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/4009820"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4009820</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.3390/e21090823"/>
    <dct:description>&lt;p&gt;We derive a new kinetic and a porous medium equations from the nonlinear Schr&amp;ouml;dinger equation with random potentials. The kinetic equation has a very similar form with the 4-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread infinitely as time goes to infinity and this fact answers the &amp;#39;weak turbulence&amp;#39; question for the nonlinear Schr&amp;ouml;dinger equation with random potentials positively. We also derive Ohm&amp;#39;s law for the porous medium equation.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.3390/e21090823</dcat:accessURL>
        <dcat:byteSize>188069</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4009820/files/1905.06323.pdf">https://zenodo.org/record/4009820/files/1905.06323.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/823937/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">823937</dct:identifier>
    <dct:title>Hydrodynamical approach to light turbulence</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
15
16
views
downloads
Views 15
Downloads 16
Data volume 3.0 MB
Unique views 13
Unique downloads 16

Share

Cite as