Journal article Open Access
Yanniek van der Schans; David Ruhe; Wido van Peursen; Sandjai Bhulai
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Recurrent Neural Networks</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Biblical Hebrew</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Diachronic Liguistics</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Computational Semantics</subfield> </datafield> <controlfield tag="005">20200827125923.0</controlfield> <controlfield tag="001">4003509</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Vrije Universiteit Amsterdam</subfield> <subfield code="a">David Ruhe</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Vrije Universiteit Amsterdam</subfield> <subfield code="a">Wido van Peursen</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Vrije Universiteit Amsterdam</subfield> <subfield code="a">Sandjai Bhulai</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2872912</subfield> <subfield code="z">md5:d938f106ab0d5e13f2514ff4cd94ece6</subfield> <subfield code="u">https://zenodo.org/record/4003509/files/Yanniek_David_FINAL.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-08-27</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-niaaproceedings1819</subfield> <subfield code="o">oai:zenodo.org:4003509</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Vrije Universiteit Amsterdam</subfield> <subfield code="a">Yanniek van der Schans</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Clustering Biblical Texts Using Recurrent Neural Networks</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-niaaproceedings1819</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This study examines linguistic variation within Biblical Hebrew<br> by using Recurrent Neural Networks (RNNs) to detect differences<br> and cluster the Old Testament books accordingly. Various linguistic<br> features are analysed that are traditionally considered to be of importance in analysing linguistic variation. The traditional division<br> of books as either Early Biblical Hebrew or Late Biblical Hebrew is<br> hereby put to the test. Results show that RNNs are a fitting method<br> for analysing the (morpho)syntax of a language. The model works<br> well on both separate features, as well as all the features combined.<br> On the basis of the results the RNNs provide, we propose that<br> the diachronic approach to Biblical Hebrew is indeed plausible.<br> The clusters generally hint to the scholarly division made in the<br> diachronic approach to linguistic variation<br> &nbsp;</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.4003508</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.4003509</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 334 | 334 |
Downloads | 250 | 250 |
Data volume | 718.2 MB | 718.2 MB |
Unique views | 313 | 313 |
Unique downloads | 234 | 234 |