Journal article Open Access

Clustering Biblical Texts Using Recurrent Neural Networks

Yanniek van der Schans; David Ruhe; Wido van Peursen; Sandjai Bhulai


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4003509</identifier>
  <creators>
    <creator>
      <creatorName>Yanniek van der Schans</creatorName>
      <affiliation>Vrije Universiteit Amsterdam</affiliation>
    </creator>
    <creator>
      <creatorName>David Ruhe</creatorName>
      <affiliation>Vrije Universiteit Amsterdam</affiliation>
    </creator>
    <creator>
      <creatorName>Wido van Peursen</creatorName>
      <affiliation>Vrije Universiteit Amsterdam</affiliation>
    </creator>
    <creator>
      <creatorName>Sandjai Bhulai</creatorName>
      <affiliation>Vrije Universiteit Amsterdam</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Clustering Biblical Texts Using Recurrent Neural Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Recurrent Neural Networks</subject>
    <subject>Biblical Hebrew</subject>
    <subject>Diachronic Liguistics</subject>
    <subject>Computational Semantics</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-08-27</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4003509</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4003508</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/niaaproceedings1819</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This study examines linguistic variation within Biblical Hebrew&lt;br&gt;
by using Recurrent Neural Networks (RNNs) to detect differences&lt;br&gt;
and cluster the Old Testament books accordingly. Various linguistic&lt;br&gt;
features are analysed that are traditionally considered to be of importance in analysing linguistic variation. The traditional division&lt;br&gt;
of books as either Early Biblical Hebrew or Late Biblical Hebrew is&lt;br&gt;
hereby put to the test. Results show that RNNs are a fitting method&lt;br&gt;
for analysing the (morpho)syntax of a language. The model works&lt;br&gt;
well on both separate features, as well as all the features combined.&lt;br&gt;
On the basis of the results the RNNs provide, we propose that&lt;br&gt;
the diachronic approach to Biblical Hebrew is indeed plausible.&lt;br&gt;
The clusters generally hint to the scholarly division made in the&lt;br&gt;
diachronic approach to linguistic variation&lt;br&gt;
&amp;nbsp;&lt;/p&gt;</description>
  </descriptions>
</resource>
253
183
views
downloads
All versions This version
Views 253253
Downloads 183183
Data volume 525.7 MB525.7 MB
Unique views 243243
Unique downloads 173173

Share

Cite as