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†Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
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Abstract—Microbiome studies are attracting increasing in-
terest, especially in human health applications, where their use
for disease prognostics, diagnostics and treatment can have
immense effects on life quality. The settings in the microbiome
data preprocessing stage can lead to the great variability of the
generated operational taxonomic unit (OTU) tables, reflected
in the size and sparseness of this data matrix. As there are still
no solid guidelines on the best practices, it is valuable to assess
which machine learning algorithms provide higher stability of
results under variable preprocessing settings.

In this study, we have generated OTU tables using data
from the Moving pictures of human microbiome study using
two different reference databases (Greengenes and Silva) and
four levels of the similarity threshold (ranging from 90 to
99%), processed in the QIIME bioinformatics package. The
results of the two best-performing classification and clustering
algorithms are presented in detail: Random Forest classifier
(RF) and Spectral clustering (SC). The random forest classifier
has outperformed spectral clustering in terms of accuracy. As
the rate of data generation increases, while the cost of labeling
remains high, further improvement of clustering performance
and ensemble approaches should be explored.

Keywords-Bioinformatics; microbiome; machine learning;
OTU table; 16S rRNA.

I. INTRODUCTION

Microbiome studies have a great potential for resolving

questions and problems in the medical, environmental and

agricultural field when coupled with reliable and extensively

collected multi-scale meta-data of the samples. The rising

awareness of the many roles microbes take up in their

hosts and habitats is increasing the interest and funding that

researchers have for these studies. When talking about the

human microbiome, because of the impact it has on the host

body health and physiology, it’s rightfully called the second

genome [1].

Microbiome information is most often accessed via

16s rRNA marker sequencing [2] or DNA metabar-

coding approaches that apply whole-genome sequencing

(WGS) [3], [4]. While both can reveal the diversity and

relative abundance of microbial communities within the

researched samples, the later can also provide additional

information on the span of their functions within the given

habitat. The rapidly decreasing price of high-throughput

sequencing methods and computing equipment is making

metagenomic studies more accessible than ever [5], but the

amount of data produced is enormous and extracting mean-

ingful and reliable biological knowledge is still challenging.

A few large projects have been collecting the microbiome

data and knowledge within several different fields, the

two biggest being The Human Microbiome Project (HMP)

geared towards studies of the microbiome’s effect on the

human health [6], [7], [8], [9] and the Earth Microbiome

Project (EMP) that focuses on general microbial diversity

across habitats [10], [11], [12], [13]. One of the remaining

issues is that as many as 99,5% of the microbes, especially

among those found in soil samples, might still be unde-

tectable as they have not been successfully isolated and

cultured so far, and thus are not included in the referenced

databases [14], [15]. This bottleneck in which microbes we

are able to detect in our samples can limit the power of the

biological interpretations of the study results and therefore

it is crucial to invest time and money in building more

extensive microbe reference databases.

To efficiently extract biologically relevant and reliable

information from microbiome data coupled with multi-scale

metadata, we also need robust computational and modelling

approaches. During the handling of this data, numerous

dilemmas can arise in choosing the optimal preprocessing

parameters (sequence quality filtering, reference database

choice, software package choice, picking operational tax-

onomic units (OTUs), generating OTU tables, etc.), but

also in choosing a clustering or classification algorithm to

unveil the structure of the microbial communities. There

is a need for higher stability and reliability in the derived

conclusions. As there are still no clear standards for the

optimal parameter setups, the assessment of the effect their

variation has on the performance of the machine learning

algorithms has a great value for the research community.

The OTU stability is often neglected, but it’s an impor-

tant part within the analysis [16]. Variability can arise

during de novo clustering, when a reference sequence is

lacking or when different reference databases are used, as

a result of implementing different β-diversity measures for

phylogenetic differentiation [17], [18], [19], when different
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clustering or classification algorithms are being applied, or

due to grouping into enterotypes (based on the prevalent

bacterial genera in the gut microbiome) where it has been

shown that the results highly depend on data source type,

sequencing depth, the distance metric, similarity thresholds,

OTU-picking, etc. [20].

The Moving pictures of human microbiome dataset [1]

used in our evaluation contains temporal analyses of the

microbial data. Such longitudinal studies come with their

sets of challenges in correctly assessing what variation span

can be attributed to normal microbial community dynamics,

what leads to a pathological state, and how therapeutics can

help restore a healthy microbiome [21], [22], [23]. In that

study, it has been shown that only a few taxa persist over

time and that the temporal variability in the microbiota of

an individual is quite pronounced - which demonstrates one

of the challenges in the interpretation of the results. Despite

that, the differences between body sites and individuals are

stable and sufficient for correct sample classification, which

makes this dataset suitable for comparing the performance of

different algorithms in capturing the structure of the data. We

have evaluated the stability and robustness of the clustering

and classification algorithms’ output with respect to variation

in the parameter settings within the QIIME preprocessing

pipeline [24], [25]. More specifically, we have observed the

influence of the reference database used, exploring the Silva

and Greengenes as options, as well as the influence of the

similarity threshold settings used to identify taxa.

II. MATERIAL AND METHODS

A. Data

In this research, we used the data from the Moving
pictures of human microbiome study [1], which was the

largest human microbiome time series analysis performed

to that date. The size of the dataset is ≈ 12GB and it

encompasses millions of 16S rRNA sequences from 1967

samples, obtained from three body sites (oral, skin, gut) of

one male and one female subject collected during 15 and

6 months, respectively, covering over 396 time-points (see

Table I).

Table I
THE SAMPLES’ GENDER AND SITE DISTRIBUTION IN THE

Moving pictures of the human microbiome DATASET.

Gender Site Number of samples
Female Oral 135

Female Skin 268

Female Gut 131

Male Oral 373

Male Skin 724

Male Gut 336

As sufficient stability was demonstrated in the differ-

entiation between body sites, this dataset was chosen due

to its suitable characteristics for testing classification and

clustering algorithms. The data was accessed via MG-RAST

API [26] after quality filtering.

B. Methods

The data was processed in QIIME [24], [25]. The overall

experimental workflow included the following steps:

1) Preprocessing (removing primers, demultiplexing,

quality filtering);

2) Picking OTUs (clustering reads by sequence similarity

to a reference sequence database to determine their

taxonomic belonging, discarding the rest);

3) Building an OTU table (containing OTU counts per

sample);

4) Measuring β-diversity between samples and rarefac-

tion;

5) Training and cross-validating classification algorithm

on an OTU table, resulting from a step 3 for each

combination of the parameter settings;

6) Clustering samples based on β-diversity matrices, that

are the result of step 4.

The first 4 steps are part of QIIME package that were run

with different settings. The last 2 belong to the machine

learning part of the study that was used for algorithm

stability evaluation.

When picking OTUs in the second step, the variability

in the results was explored in the light of two differ-

ent reference databases (Greengenes [27], [28], [29] and

Silva [30], [31]), as it has been shown earlier how the

choice of the reference database can have an impact on the

results [32]. We used the latest available releases gg_13_5
from 2013 and Silva_132_release from 2017 for Green-

genes and Silva, respectively. Four levels of taxonomy were

induced by choosing different similarity thresholds (90 to

99%, with 97% being the usual threshold when defining the

taxonomy to the species level) for clustering the sequences

using the default taxonomy assigner - UCLUST [33]. This

was done to see how these settings affect the number and

sparseness of features within the generated OTU tables.

The picked OTUs (retained and taxonomically assigned

sequences) identified in the analyzed samples, form an OTU

table that represents the microbial taxonomy per sample in

a form of observation counts per sample. The OTU table is

a data matrix, an input to the machine learning algorithms.

The Random Forest (RF) was used as a classification

algorithm, with n=500 trees, while the evaluation of the clas-

sification accuracy was assessed using confusion matrices,

estimated using 10-fold cross-validation.

For the clustering algorithms, the similarity measure be-

tween samples is the first to be defined. β-diversity (micro-

bial community diversity between samples from different

sites) was measured from OTU tables to generate pairwise
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distance matrices. 24 non-phylogenetic diversity (distance)

measures were explored: (1) binary Chi-square, (2) binary

Chord, (3) binary Euclidean, (4) binary Hamming, (5) binary

Jaccard, (6) binary Lennon, (7) binary Ochiai, (8) binary

Pearson, (9) binary Sörensen-Dice, (10) Bray-Curtis, (11)

Canberra, (12) Chi-square, (13) Chord, (14) Euclidean,

(15) Gower, (16) Hellinger, (17) Jaccard, (18) Kulczynski,

(19) Manhattan distance, (20) Morisita-Horn, (21) Pearson,

(22) Soergel, (23) Spearman rank, and (24) Species profile

distance.

To quantify how similar are the β-diversity matrices,

we measured the correlation between different β-diversity
measures using the Mantel test [34] formulated as:

rm =
1

d− 1

n−1∑

i=1

n∑

j=i+1

DXijDY ij (1)

where d = n(n − 1)/2, and DXij , DY ij are standardized

distances, and n is the number of samples that are taken

pairwise to calculate the distance matrix.

Figure 1. Evaluation of the Random Forest algorithm based on confusion matrices showing the corresponding classification accuracy for the similarity
thresholds at 90 or 91% and 99%, using different databases: Greengenes and Silva.
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Prior to clustering, we have performed the Kernel Prin-

cipal Component Analysis (KPCA) to visually evaluate

how well the samples are discriminated based on the first

two principal components that rely on different β-diversity
measures.

Clustering was performed using the spectral clustering

algorithm [35] as it works directly on the β-diversity
distance matrices. For all β-diversity metrics the pairwise

distances between samples were transformed into similarities

following the element-wise transformation:

Sij = e−D2
ij/(2σ

2) (2)

where D is a pair-wise β-diversity matrix, σ is the mean

value of that matrix, and S is the final similarity matrix. The

spectral clustering was performed for all 24 β-diversity met-

rics independently, using the corresponding similarity matrix

as input, resulting in 24 partitions for each combination of

the similarity threshold and the reference database evaluated.
We used the Adjusted Rand Index (ARI) [36] to evaluate

and compare the clustering results. Rand index [37] is the

measure of similarity between two data clustering results

(expected versus observed), while ARI is corrected-for-

chance version of the Rand Index [38].

III. RESULTS

The variability in the QIIME preprocessing settings (the

reference databases used and similarity thresholds set) have

highly impacted the number of features (ranging from

6637 to 87069) and values in the OTU tables (i.e. matrix

sparseness). This was because the possibility to detect the

specific microbe sequence in a certain database and the

sequence similarity cutoff determines the number of OTUs

in the future analysis. Initially, several classification and

clustering algorithms were tested with multiple splits into

training and test samples, but the performance of the two

best is presented: Random Forest classifier (RF) and Spectral

clustering (SC).

A. Random Forest classifier (RF)
The RF algorithm has demonstrated a capacity to learn

on the sparse data and provided very stable classification

results regardless of the reference database and the identity

threshold settings. The generated confusion matrices (Fig. 1)

show the RF performance evaluation for the Silva database

with the similarity thresholds set to 90% and 99% (upper

panel), and the corresponding matrices for the Greengenes

database with the similarity thresholds set to 91% and 99%

(lower panel). The lower similarity threshold limit differs

between the two databases because the same similarity

threshold option was not available in both, so the closest

was chosen (90% and 91%, respectively). The classification

accuracy, estimated by the 10-fold cross-validation, was in

average around 96% for different parameter settings (ranging

from 95.63% to 96.7%, and increasing as the similarity

thresholds have been increased).

B. β-diversity evaluation

The evaluation of the correlation between β-diversity
measures was performed using the Mantel test. The test

results are summarized via boxplot and presented in Fig. 2.

The boxplot presents the distribution of the measured cor-

relation between all pairs of the β-diversity matrices. With

the median of ≈ 0.55, the obtained results provide insight

that different β-diversities capture different relationships

between microbiome samples, which has raised concerns on

the diversity of the partitions in the clustering step.

Figure 2. Evaluation of the correlation between the β-diversity measures
using the Mantel test.

When it comes to the low dimensional representation

of the samples in the OTU table, the KPCA was able to

resolve the body sites, but without gender separation. This

was achieved using the first two principal components (see

Fig. 3).

C. Spectral clustering (SC)

SC has shown a large ARI variability when different β-
diversity matrices were used and a high sensitivity to any

change in the parameters. Agreement of the clustering results

with true classes measured by ARI varied from 0.35 to 0.59,

with mean value 0.51±0.06 standard deviation. The ARI for

partitions using all β-diversity measures is shown in Fig. 4

and across all threshold in Fig. 5.

Fig. 4 uncovers the performance of clustering on each

of the used β-diversity measures, reevaluated with differ-

ent thresholds for similarities with sequences in the two

reference databases. While for some β-diversity measures

the threshold selection does not highly impact the result

(noticed as the close grouping of dots of the same color),
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Figure 3. Kernel Principal Component Analysis (KPCA) separation of
female and male study participant’s samples according to body site based
on PC1 and PC2 of the abundance weighted Jaccard distance as the β-
diversity metric. On both figures, different colors indicate different body
sites (oral, skin and gut).

others are more sensitive (e.g. specprof - Species profile

distance, whose ARI for different thresholds is taking up a

wider range of values). Interestingly, the clustering on the

binary β-diversity measures provided results that better align

with true labels, as evaluated by ARI, but at the same time,

the results were more sensitive to the threshold and database

selection.

Fig. 5 shows a different perspective on the variability

of the clustering results. We have measured the stability

of ARI for spectral clustering using β-diversity measures

under a few different similarity thresholds and two different

databases (Silva and Greengenes). We can notice the differ-

ences between the results generated using different reference

databases and the smallest variability for the 99% threshold,

especially in the case where the Greengenes database was

used.

The clustering evaluation results were confirmed by an

alternative external validation measure as well - Normalized

Mutual Information (NMI) [39].

IV. CONCLUSION

The efficient classification of a healthy baseline micro-

biome data provides grounds for a robust modelling of mi-

crobiome data for health-related datasets. The RF classifier

has better separated the samples according to their labels,

outperforming the clustering with respect to both accuracy

and the stability of the results. However, as clustering is

prevailing in use as no labels are available in most mi-

crobiome studies (but are often yet to be discovered and

assigned to samples), further improvements of clustering

by dimensionality reduction, ensemble or semi-supervised

approaches should be explored [40], [41]. A new release

of QIIME, QIIME2 has been published [42], opening the

possibility to compare the performance of the enhanced pre-

processing analysis pipeline. Also, alternative preprocessing

tools could be included in the analysis to comprehensively

evaluate different settings in bioinformatics workflows and

their performance in microbiome analyses.

ACKNOWLEDGMENT

This research was in part supported by the grants III43002

and III44006 of the Ministry of Education, Science and

Technological Development of the Republic of Serbia. It was

based upon work done within the COST Action CA18131:

Statistical and machine learning techniques in human mi-

crobiome studies, that’s supported by the COST Association

(European Cooperation in Science and Technology).

REFERENCES

[1] J. G. Caporaso, C. L. Lauber, E. K. Costello, D. Berg-Lyons,
A. Gonzalez, J. Stombaugh, D. Knights, P. Gajer, J. Ravel,
N. Fierer et al., “Moving pictures of the human microbiome,”
Genome biology, vol. 12, no. 5, p. R50, 2011.

[2] J. M. Janda and S. L. Abbott, “16s rrna gene sequencing
for bacterial identification in the diagnostic laboratory:
Pluses, perils, and pitfalls,” Journal of Clinical Microbiology,
vol. 45, no. 9, pp. 2761–2764, 2007. [Online]. Available:
https://jcm.asm.org/content/45/9/2761

[3] M. L. Zepeda Mendoza, T. Sicheritz-Pontén, and M. T. P.
Gilbert, “Environmental genes and genomes: understanding
the differences and challenges in the approaches and
software for their analyses,” Briefings in Bioinformatics,
vol. 16, no. 5, pp. 745–758, 02 2015. [Online]. Available:
https://doi.org/10.1093/bib/bbv001

[4] E. Aylagas, A. Borja, X. Irigoien, and N. Rodríguez-
Ezpeleta, “Benchmarking dna metabarcoding for biodiversity-
based monitoring and assessment,” Frontiers in Marine
Science, vol. 3, p. 96, 2016. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/fmars.2016.00096

[5] J. Zhou, Z. He, Y. Yang, Y. Deng, S. G. Tringe,
and L. Alvarez-Cohen, “High-throughput metagenomic
technologies for complex microbial community analysis:
Open and closed formats,” mBio, vol. 6, no. 1, 2015. [Online].
Available: https://mbio.asm.org/content/6/1/e02288-14

842



Figure 4. The ARI for the spectral clustering partitions based on different β-diversity measures (indicated by color) for four different thresholds (90-91%,
94%, 97% and 99%) separated for the Silva and Greengenes database. The aggregation of dots in the same color (i.e. the same β-diversity measure)
indicates the stability of the clustering results regardless of the threshold similarity used.

Figure 5. The boxplots of the ARI clustering evaluation for all β-diversity measures when different similarity thresholds and different databases are used.

843



[6] J. Peterson et al., “The NIH human microbiome project,”
Genome research, vol. 19, no. 12, pp. 2317–2323,
Dec 2009, 19819907[pmid]. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pubmed/19819907

[7] D. Gevers, R. Knight, J. F. Petrosino, K. Huang, A. L.
McGuire, B. W. Birren, K. E. Nelson, O. White, B. A.
Methé, and C. Huttenhower, “The human microbiome
project: a community resource for the healthy human
microbiome,” PLoS biology, vol. 10, no. 8, pp. e1 001 377–
e1 001 377, 2012, 22904687[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/22904687

[8] P. et al., “The integrative human microbiome project,”
Nature, vol. 569, no. 7758, pp. 641–648, 2019. [Online].
Available: https://doi.org/10.1038/s41586-019-1238-8

[9] “The human microbiome project website,” https://www.
hmpdacc.org/hmp/, accessed: 2019-07-14.

[10] J. A. Gilbert, J. K. Jansson, and R. Knight, “The
earth microbiome project: successes and aspirations,” BMC
Biology, vol. 12, no. 1, p. 69, Aug 2014. [Online]. Available:
https://doi.org/10.1186/s12915-014-0069-1

[11] L. R. Thompson et al., “A communal catalogue reveals
earth’s multiscale microbial diversity,” Nature, vol. 551,
pp. 457 EP –, Nov 2017, article. [Online]. Available:
https://doi.org/10.1038/nature24621

[12] J. A. Gilbert, J. K. Jansson, and R. Knight, “Earth microbiome
project and global systems biology,” mSystems, vol. 3, no. 3,
pp. e00 217–17, Apr 2018, 29657969[pmid]. [Online].
Available: https://www.ncbi.nlm.nih.gov/pubmed/29657969

[13] “The earth microbiome project website,” http://www.
earthmicrobiome.org/, accessed: 2019-07-14.

[14] T. M. Vogel, P. Simonet, J. K. Jansson, P. R. Hirsch,
J. M. Tiedje, J. D. van Elsas, M. J. Bailey, R. Nalin, and
L. Philippot, “Terragenome: a consortium for the sequencing
of a soil metagenome,” Nature Reviews Microbiology, vol. 7,
pp. 252 EP –, Apr 2009, editorial. [Online]. Available:
https://doi.org/10.1038/nrmicro2119

[15] “The terragenome: International soil metagenome sequencing
consortium website,” https://www.terragenome.org/, accessed:
2019-07-14.

[16] Y. He, J. G. Caporaso, X.-T. Jiang, H.-F. Sheng, S. M. Huse,
J. R. Rideout, R. C. Edgar, E. Kopylova, W. A. Walters,
R. Knight, and H.-W. Zhou, “Stability of operational
taxonomic units: an important but neglected property
for analyzing microbial diversity,” Microbiome, vol. 3,
no. 1, p. 20, May 2015. [Online]. Available: https:
//doi.org/10.1186/s40168-015-0081-x

[17] J. Kuczynski, Z. Liu, C. Lozupone, D. McDonald, N. Fierer,
and R. Knight, “Microbial community resemblance methods
differ in their ability to detect biologically relevant
patterns,” Nature methods, vol. 7, no. 10, pp. 813–
819, Oct 2010, 20818378[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/20818378

[18] P. Legendre and M. De Cáceres, “Beta diversity as the
variance of community data: dissimilarity coefficients and
partitioning,” Ecology Letters, vol. 16, no. 8, pp. 951–963.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1111/ele.12141

[19] D. H. Parks and R. G. Beiko, “Measures of phylogenetic
differentiation provide robust and complementary insights
into microbial communities,” The ISME journal, vol. 7,
no. 1, pp. 173–183, Jan 2013, 22855211[pmid]. [Online].
Available: https://www.ncbi.nlm.nih.gov/pubmed/22855211

[20] O. Koren, D. Knights, A. Gonzalez, L. Waldron, N. Segata,
R. Knight, C. Huttenhower, and R. E. Ley, “A guide
to enterotypes across the human body: Meta-analysis of
microbial community structures in human microbiome
datasets,” PLOS Computational Biology, vol. 9, no. 1, pp.
1–16, 01 2013. [Online]. Available: https://doi.org/10.1371/
journal.pcbi.1002863

[21] E. C. Dinleyici, D. Martínez-Martínez, A. Kara, A. Karbuz,
N. Dalgic, O. Metin, A. S. Yazar, S. Guven, Z. Kurugol,
O. Turel, M. Kucukkoc, O. Yasa, M. Eren, M. Ozen,
J. M. Martí, C. P. Garay, Y. Vandenplas, and A. Moya,
“Time series analysis of the microbiota of children suffering
from acute infectious diarrhea and their recovery after
treatment,” Frontiers in Microbiology, vol. 9, p. 1230,
2018. [Online]. Available: https://www.frontiersin.org/article/
10.3389/fmicb.2018.01230

[22] B. J. Ridenhour, S. L. Brooker, J. E. Williams, J. T.
Van Leuven, A. W. Miller, M. D. Dearing, and C. H. Remien,
“Modeling time-series data from microbial communities,”
The ISME journal, vol. 11, no. 11, pp. 2526–2537,
Nov 2017, 28786973[pmid]. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pubmed/28786973

[23] K. Faust, L. Lahti, D. Gonze, W. M. de Vos, and
J. Raes, “Metagenomics meets time series analysis:
unraveling microbial community dynamics,” Current
Opinion in Microbiology, vol. 25, pp. 56 – 66,
2015, environmental microbiology • Extremophiles.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1369527415000478

[24] J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger,
F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña,
J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T.
Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A.
Lozupone, D. McDonald, B. D. Muegge, M. Pirrung,
J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A.
Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and
R. Knight, “Qiime allows analysis of high-throughput
community sequencing data,” Nature Methods, vol. 7, pp.
335 EP –, Apr 2010, correspondence. [Online]. Available:
https://doi.org/10.1038/nmeth.f.303

[25] “QiimeTM: Quantitative insights into microbial ecology,” http:
//qiime.org/, accessed: 2019-07-10.

[26] A. Wilke, J. Bischof, T. Harrison, T. Brettin, M. D’Souza,
W. Gerlach, H. Matthews, T. Paczian, J. Wilkening, E. M.
Glass, N. Desai, and F. Meyer, “A restful api for accessing
microbial community data for mg-rast,” PLOS Computational
Biology, vol. 11, no. 1, pp. 1–8, 01 2015. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1004008

844



[27] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas,
E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu,
and G. L. Andersen, “Greengenes, a chimera-checked
16s rrna gene database and workbench compatible with
arb,” Applied and Environmental Microbiology, vol. 72,
no. 7, pp. 5069–5072, 2006. [Online]. Available: https:
//aem.asm.org/content/72/7/5069

[28] “Greengenes 16s rrna gene database,” https://greengenes.
secondgenome.com/, accessed: 2019-07-11.

[29] D. McDonald, M. N. Price, J. Goodrich, E. P. Nawrocki,
T. Z. DeSantis, A. Probst, G. L. Andersen, R. Knight, and
P. Hugenholtz, “An improved greengenes taxonomy with
explicit ranks for ecological and evolutionary analyses of
bacteria and archaea,” The ISME journal, vol. 6, no. 3, pp.
610–618, Mar 2012, 22134646[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/22134646

[30] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer,
P. Yarza, J. Peplies, and F. O. Glöckner, “The silva ribosomal
rna gene database project: improved data processing and web-
based tools,” Nucleic acids research, vol. 41, no. D1, pp.
D590–D596, 2012.

[31] “Silva: high quality ribosomal rna database,” https://www.
arb-silva.de/, accessed: 2019-07-11.
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