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One of the biggest problems in agriculture is concerned with seed selection. Wrong choice of seed variety
cannot be compensated with fertilisation, spraying or the use of mechanisation later in the season. The
purpose of this work was to design the strategy for selecting soybean varieties that should be planted
on the test farm in order to maximise yield in the following season, based on the knowledge acquired
from heterogeneous historical data. We propose weighted histograms regression to predict the yield of
different varieties and compare our method to conventional regression algorithms. Based on the
predicted yield, we perform portfolio optimisation to come up with the optimal selection of seed varieties
that is to be planted. Presented algorithms and results were produced within the Syngenta Crop
Challenge.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The world’s growing food demand (Godfray et al., 2010; Ash
et al., 2010) challenges seed industry to develop and improve seed
varieties, but also challenges farmers to select appropriate seeds
among hundreds of varieties available nowadays (Sperling et al.,
2014; McGuire and Sperling, 2016). What farmers would certainly
need is a portfolio of seed varieties, customised for the environmen-
tal conditions at their farm, which would maximise the yield and
reduce the insecurity that comes from its variability (Hanson,
2013). Such a targeted solution is important for both traditional
(Yengoh, 2012; Louette et al., 2000) and precision agriculture,
where the decisions are made locally, on the smallest possible scale
(Gassner et al., 2013). In general, there are numerous parameters
that influence crop yield. Most prominent are climate and weather
conditions, soil type, seed variety and land management, but in the
end, it is their complex interaction that determines the yield.

In order to make the decision which seed varieties would be
suitable for the given parcel and its environmental parameters, it
is necessary to predict their yields. There is an increasing number
of scientific researches dealing with yield prediction of various
types of crops, fruit and vegetables. Some are based on image
processing like in (Pantazi et al., 2016; Liakos et al., 2015), where
yield was predicted using NDVI extracted from satellite images
and images acquired by a handheld camera. Another approach is
to analyse the physical properties of plants, such as height, grain
weight and peduncle length (Romero et al., 2013), number of
flowers on apple trees (Aggelopoulou et al., 2011) or chlorophyll
content measured with SPAD (Saruta et al., 2013). Weather data
can also serve as input for yield prediction (Marinković et al.,
2009; Brdar et al., 2011; Gonzalez-Sanchez et al., 2014). For
example, rainfall in May and a lot of sunshine in June can positively
affect the yield of wheat in Serbia, whereas dry spring and
extremely hot June can affect it negatively.

The problem with seed selection is that, no matter how
successful they may be, none of the aforementioned in-season
methods can be applied. It is impossible to know crop vigor, plant
height or even weather conditions for the next year. However, the
condition of soil does not change dramatically one year after
another. It has been shown that content of organic matter,
phosphorus, calcium and other compounds in the soil, as well as
its pH value, are good indicators of the amount of yield
(Drummond et al., 2003). Furthermore, yield can be also estimated
based on the ratio of clay, silt and sand, and soil’s shallow electrical
conductivity (Papageorgiou et al., 2013).

As for the algorithms used for yield prediction, most common
ones are artificial neural networks (ANNs) (Pantazi et al., 2016;
Drummond et al., 2003; Freitas et al., 2009; Uno et al., 2005;
Kaul et al., 2005), multiple regression (Drummond et al., 2003;
Kaul et al., 2005) and regression trees (Romero et al., 2013;
Marinković et al., 2009). In this work we propose a novel approach
to yield prediction – weighted histograms regression (WHR). We
approximate the yield probability density function (PDF) at the test
farm by forming a histogram of yield, whose entries are weighted
according to similarity between test and training farms.

Weighted histograms are not completely new. They have
already been used in image processing for motion tracking
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(Comaniciu et al., 2003), where an object’s feature PDF needs to be
calculated. Pixels in the centre of an object are more reliable and
thus are attributed with a higher weight. Peripheral pixels are less
reliable due to occlusion and interference from the background,
and are thus taken with a lower weight. Also, in object recognition,
target objects are compared to objects from the database by colour
histograms. Since colour is susceptible to changes caused by
varying illumination, similar colours are also taken into account
– the more similar they are, the more they will contribute to the
histogram (Jia et al., 2006).

Yield prediction is just a step towards seed selection. Having
known the values of yield predicted for each seed variety, portfolio
optimisation theory comes into play. It is a well established theory,
originally used for choosing the right portfolio of investments on
stock market, which would maximise the return and minimise
the risk (Markowitz, 1952). Lately, there have been some examples
of its usage in agriculture, as well. It is usually employed in seed
variety selection (Nalley et al., 2009; Nalley and Barkley, 2010;
Barkley et al., 2010), where predicted yield corresponds to financial
return (Freitas et al., 2009), but there are also cases of its use for e.g.
irrigation decision-making in condition of reduced water
availability (Paydar and Qureshi, 2012), forest planning under the
effects of climate change (Dragicevic et al., 2016) and for selecting
optimal mix of tree families (Weng et al., 2013). It is always a good
strategy to grow plants that respond differently to different
environmental conditions and thus statistically better cope with
weather unpredictability (Di Falco, 2012). This is especially
important for ensuring yield stability in low-income nations and
increasing drought and pest tolerance of crops (Barkley et al., 2010).

Whereas high prediction accuracy has been achieved only with
classification of the yield into categories, such as low, medium and
high (Romero et al., 2013; Saruta et al., 2013; Papageorgiou et al.,
2013) and with in-season predictions (Marinković et al., 2009;
Brdar et al., 2011; Kaul et al., 2005), we show that it is possible
to achieve a high accuracy prediction for one year in advance by
using the weighted histograms regression approach. By using this
method along with convex optimisation and portfolio optimisation
theory it is possible to select a portfolio of seeds, which maximises
the yield.

2. Data

Algorithms and related results presented in this paper have
been in part developed within the Syngenta Crop Challenge
(Syngenta Crop Challenge, 2016), where competitors were pro-
vided with necessary historical data about soil, yield and soybean
varieties used. The dataset contained 34,212 entries with any of
180 seed varieties planted on one of 120 farms located in the
American Midwest (Fig. 1). The varieties were represented with
anonymised IDs – v i, where i took 180 values within the range
from 1 to 210.

Season, geographic location, soil properties, common practice
and other related parameters were given as features and are listed
in Table 1. The sources of data were Syngenta’s internal database,
ISRIC (World Soil Information) (Hengl et al., 2014), CONUS
(Soil Information for Environmental Modeling and Ecosystem
Management) (Miller and White, 1998), NASS (United States
National Agricultural Statistics Service) (Boryan et al., 2011) and
FAO (United Nation’s Food and Agriculture Organisation)
(FAO, 2016). Some features were contained in datasets of two inde-
pendent sources. Values from multiple sources were treated as
separate features and were all used for prediction.

In the preprocessing phase, we detected that there were
multiple entries with the same seed variety planted on the same
farm in the same year, but with a different value of yield. We
merged them and used only the average yield value accordingly,
leaving 32,120 entries. In order to avoid bias and provide reliable
yield prediction results for one season, we further split the set into
training (seasons 2008–2013) and test dataset (season 2014), with
21,121 and 10,999 entries, respectively. We used only year 2014 as
the test dataset to maintain the time causality of our approach.
Each year the overall yield gets bigger because of the better
mechanisation, pesticides and fertilisers used, as well as other
improvements in agricultural production and it was crucial to
capture this trendline. In this manner we tried predicting yield in
previous years as well. However, the available training dataset
reduced dramatically for each preceding year. The number of
training samples was insufficient to successfully predict the yield
in years before 2014.

3. Methodology and theory

3.1. Prediction using weighted histograms

In order to get the idea about a complexity of the given
problem, we used the most straightforward approach by checking
the correlation between the yield and individual features, but we
did not get any meaningful results. There was no direct link
between any of the parameters and the yield. Consequently, we
proposed a novel method with the underlying principle that the
agricultural system is determinative, i.e. with the same environ-
mental conditions, soil characteristics and seed varieties, different
farms give the same yield. In other words, when features of any
two farms are compared, the more similar the features are, the
more likely it is for the farms to have similar yield. The detailed
description of the method follows.

The goal of Syngenta Crop Challenge was to choose up to five
soybean varieties that should be planted on the so-called
‘‘Evaluation Farm” to maximise the yield. Firstly, we chose a soy
variety whose yield we wanted to predict at a test farm. The
process was repeated for all available varieties. In the following
example, the evaluation farm was denoted as FE and the variety
of interest as vx. Let us assume that there were five instances of
planting vx in the training dataset. Although this particular variety
can be planted on the same farm throughout different years, we
can assume without the loss of generality that it was planted on
five different farms (F1 to F5) (Fig. 2).

Next, we considered the similarity between environmental
conditions and other properties at training farms where vx was
planted and related properties at the evaluation farm. They were
compared according to individual features – one feature at a time.
Let us denote an arbitrary feature according to which the similarity
was measured as f i. The example in Fig. 3 shows values of the given
feature at different farms, where the superscript indicates the farm
it is related to.

Accordingly, distances of training farms from evaluation farm in
the feature’s space are shown in descending order in Table 2.

The yield at evaluation farm was more likely to resemble the

yield at farms whose value of f i was closer to f Ei . Likewise, we could
not expect the yield at the evaluation farm to correspond to the
yield of a training farm if they had completely different f is. Another
way of explaining this is to view the training farms as advisers,
who give their opinion about the yield at the evaluation farm.
However, their opinions were not equally important. Opinions of

training farms whose f i was closer to f Ei were taken with a higher
significance than the opinions of those farms whose f i was far

away from f Ei . Furthermore, a farm’s opinion was simply the value
of its own yield. It was as if the training farms were telling the
evaluation farm that it would have the same yield as them, but
the evaluation farm valued their opinions according to how far
they were with respect to the given feature. In order to quantify



Fig. 1. Shaded is the region in the United States where farms are located.

Table 1
List of features attributed to samples provided for Syngenta Crop Challenge. Features
obtained from Syngenta R&D, ISRIC, CONUS, NASS and FAO datasets are marked with
numbers 1–5 respectively.

Season (year) 1

Farm’s geographic latitude1

Farm’s geographic longitude1

Probability of growing soybeans in the nearby area 1,4

Probability of field irrigation in the nearby area5

Probability of growing soybean of relative matureness 2.5–31

How often do farmers grow soybean in the area1

Soil class based on texture, available water holding capacity, and soil
drainage1

Percentage of clay in soil2,3

Percentage of silt in soil2,3

Percentage of sand in soil2,3

Available water capacity of soil3

Soil pH value2

Soil cation exchange capacity2

Fig. 2. Evaluation farm ðFEÞ and farms (F1 to F5) where the variety was planted, for
which the yield is predicted.

Fig. 3. Values of feature f i on evaluation and training farms.

Table 2
Distances in feature’s space between training farms and evaluation farm.

Farm Distance

F3

F4

F5

F1

F2
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the weights of the opinions, we needed a monotonically descend-
ing function of distance. We used the simplest function with such a
property, which is
w ¼ 1
1þ d

: ð1Þ

It is actually 1=d shifted left for 1, so that it did not reach infinity
when the distance was zero i.e. when a training farm had precisely
the same value of f i as the evaluation farm (Fig. 4). Other monoton-

ically descending functions, such as this one with d2 instead of d or
exponential function (e�d), did not give better results.

In the next step we used weights and yields to form a weighted
histogram of yield at the evaluation farm for some feature f i
(Fig. 5). Unlike the classical histogram, where bins are filled with
the number of farms whose yield falls within that particular range,
in weighted histogram the bins are filled with weights of those
farms.



Fig. 5. Weighted histogram – each bin accumulates the weights of training farms
whose yield falls in the given range. Symbols yi andwi denote the yield at the farm i
and its relative weight.
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In this manner we calculated the weighted histograms for all
the features and all the soy varieties thus getting a 2D matrix of
histograms, as in Table 3. The only difference was with the soil
class feature, which was categorical. Without further information
about the physical meaning of categories it was not possible to find
an adequate distance measure between the categories. Therefore,
we assigned the unit weights to the farms that had the same soil
class as the evaluation farm, and zero weights to others. In this
way only the farms with exactly the same soil class contributed
to the histogram formation.

Thinking of weighted histograms of individual features as weak
classifiers whose combination yields a strong one, the proposed
algorithm can be interpreted within ensemble learning framework.
Hence the next step in which we combine weighted histograms
resembles AdaBoost algorithm (Freund and Schapire, 1997). But
first, as these histograms were filled with different weights nonlin-
early, we normalised them and transformed them into probability
density functions – PDFs. For each of themwe took expected values
EðPDFiÞ and averaged them across all the features f i, leaving only
one (final) value per variety. This predicted value aggregates the
information from all the farms on which the variety was planted,
weighted according to the similarity of the whole set of features.
However, not all weak classifiers were equally significant. Some
were simply more accurate than the others and we had to take that
into account. Each of the weak classifiers (PDFs) was assigned a
coefficient ci according to its significance, thus predicting the yield
Y as

Ypredicted ¼
X18

i¼1

ci � EðPDFiÞ; ð2Þ

where 18 denotes the total number of features.
Since this equation is linear, the problem of finding the optimal

weak classifier weights is convex, which means that the local min-
imum is also the global minimum, making the optimisation pretty
much straightforward (Boyd and Vandenberghe, 2004). We used
CVX modelling framework for convex optimisation (Grant et al.,
2014; Grant and Boyd, 2008) and tried two of its variants – con-
strained and unconstrained. In constrained case, the weights were
limited to non-negative values, while in unconstrained variant,
there were no limits whatsoever. The logic behind the constrained
variant was that the equation can be viewed as the weighted aver-
age and this statisticalmethodusesweights greater or equal to 0. On
the other hand, the problem can be viewed as an unconstrained
optimisation problem of finding the linear combination that min-
imises the error. It is defined only by the objective function that
Fig. 4. Training farm’s weight as a function of distance to the evaluation farm in
feature space.
needs to be minimised (root mean square error of prediction) and
does not contain neither equality nor inequality constraints
(Boyd and Vandenberghe, 2004). In this case, the weights can have
negative values, which are assigned to features that tend to
overestimate the yield. In the end, with both variants, we took the
expected value of the final PDF as the predicted yield of that
particular variety for that particular farm.

3.2. Choosing the right varieties

Surely we could have proposed the variety that had the highest
predicted yield to be planted on the whole evaluation farm, but
relying on a single seed variety would have been very risky. Aiming
for a slightly lower yield that came with a much lower risk was a
far better alternative. In order to achieve that we reached for the
portfolio optimisation theory. The necessary input consisted of:

1. Predicted yield of each seed variety.
2. Variance of yield for each seed variety.
3. Covariance between the yields of different seed varieties.

We calculated variance and covariance in the following way.
The model was trained on data from 2008 to 2013 and yield was
predicted for each farm from 2014 and each variety (Table 4).

Random variable corresponding to seed variety is denoted with
a capital letter V. We calculated the covariance between every pair
of varieties (Vi and Vj) as the covariance between the two random
variables, whose realisations were known.

cij ¼ E½ðVi � E½Vi�ÞðVj � E½Vj�Þ� ð3Þ
At that point we had all the necessary inputs for calculating the

efficient frontier of portfolio optimisation (Fig. 6). Efficient frontier
is a curve that encompasses the points representing all the
portfolios that are Pareto-optimal, meaning that there are no
portfolios with the same risk that have a better yield, nor portfolios
with a lower risk for that particular yield.

Choosing the right portfolio is a trade-off between yield and risk
(Markowitz, 1952). Aiming for high yield could be very risky and
aiming for low risk could bring poor yield. To find the optimal
point on the efficient frontier, we had to set a portfolio yield
threshold (PYT, dashed line on Fig. 7). For each farm in 2014 we
chose the portfolio with the lowest risk whose cumulative yield
did not fall below this threshold.

In this particular example, the portfolio encompassed the
underlined varieties in Fig. 7. These varieties are also shown in
Table 5 along with their portions in the portfolio.

The other threshold we had to set was the variety occurrence
threshold (VOT). We had to discard varieties that occurred too
few times to successfully approximate their PDFs. To estimate the
optimal value, we varied this threshold and analysed the results.



Table 3
Matrix of weighted histograms for the evaluation farm. Rows represent different features ðf iÞ and columns different soybean varieties ðv iÞ.

v1 v2 . . . v210

f 1 . . .

f 2 . . .

. . . . . . . . . . . . . . .

f 18 . . .

Table 4
Predicted yield (Y) for each variety and each farm from season 2014. The first index
corresponds to farm number, the second to variety number.

V1 V2 . . . V210

F1 Y1;1 Y1;2 . . . Y1;210

F2 Y2;1 Y2;2 . . . Y2;210

. . . . . . . . . . . . . . .

F70 Y70;1 Y70;2 . . . Y70;210

Fig. 6. Efficient frontier of portfolio optimisation (curve above the circles). Each
circle represents a different seed variety.

Fig. 7. Optimal portfolio consisted of the underlined varieties.

Table 5
Constituents of the optimal portfolio.

Variety Percentage (%)

v33 10.97
v95 10.98
v170 45.98
v177 14.31
v179 17.76
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Finally, the third parameter we needed to optimise was the
covariation matrix multiplier (CMM). It is estimated that in order
to have a reliable covariance matrix, number of observations per
variable needs to be at least one order of magnitude higher than
the number of variables (Ledoit and Wolf, 2003). In this case, there
were between 100 and 200 variables, depending on the variety
occurrence threshold, with around 150 observations on average.
Since the number of observations was insufficient, the covariance
matrix showed higher dependencies. One way to overcome this
is to multiply the matrix by a constant, effectively increasing the
variance and covariance of the varieties.

In order to find the right values of these three parameters, we
set up the optimisation problem. Improvement I at the farm i
was calculated as

Ii ¼
Yportfolioi � Yreali

Yreali

; ð4Þ
where Yportfolioi is the yield of the proposed portfolio and Yreali is the
average yield at that farm. The cost function is defined as the
average improvement across all farms. The only constraint to
the optimisation problem was that, according to Syngenta Crop
Challenge rules, there could be up to five varieties planted on one
farm and none of them could cover less than 10% of the land. The
optimum was then found using grid search. All of the possible com-
binations were tried out and the one with the lowest cost function
was selected as optimum.
4. Results

We compared proposed WHR method with different state-of-
the-art algorithms in Weka, machine learning and data mining
software (Hall et al., 2009). Some of them, particularly k-NN,
proved to be very accurate at describing the model i.e. showed very
small errors with cross-validation across the whole training set
(2008–2014). The problem was that this measure of accuracy left



Table 7
Comparison of different WHR variants and the best result without the use of portfolio
optimisation.

WHR variant VOT PYT CMM Mean improvement (%)

equ-WHR 110 0.995 1000 4.46
con-WHR (2-fold) 100 0.9975 1000 4.34
con-WHR (10-fold) 90 0.995 1000 4.87
unc-WHR (2-fold) 100 0.9975 10 3.40
unc-WHR (10-fold) 90 0.9925 100 3.46

The best result without the use of portfolio
optimisation

0.31

Fig. 8. Variety occurrence threshold vs. average yield improvement on test farms.
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the possibility of training samples being used for prediction of the
values within the same year, which is an impossible scenario in
practice. We therefore needed to test the problem in a more real-
istic manner. The classifiers were trained on 2008–2013 data and
tested on the data from 2014. We tested three variants of WHR:

1. equ-WHR: equal (not optimised) weights.
2. con-WHR: optimised and constrained weights.
3. unc-WHR: optimised and unconstrained weights.

As the relevant measures of accuracy we took root mean
squared error, mean absolute error and correlation coefficient.
Proposed method proved to be the best one according to all
criteria, as shown in Table 6.

Generally, the problem with cross-validation is that there is
always a risk of overfitting or underfitting. For this reason, the
algorithm was both 2- and 10-fold cross-validated and both
constrained and unconstrained variants were tested in the process
of variety selection.

We used grid search to find optimal values of variety occurrence
threshold (VOT), portfolio yield threshold (PYT) and covariance
matrix multiplier (CMM). We took the values for the first two lin-
early with steps 10 and 0.0025, respectively. Taking the quadratic
nature of variance into account, we chose exponentially growing
values for the matrix multiplier – 100;101, . . ., 104. Optimal sets
of parameters and the values of cost function are shown in Table 7.
The results were compared to the case where portfolio
optimisation is not used, i.e. only the soy variety with the highest
predicted yield is chosen.

Mean improvement is visualised with respect to variability of
each individual parameter, while other parameters were left at
the optimal point achieved for con-WHR (10-fold). In Fig. 8 we
can see that lower values of VOT decreased the improvement,
because they allowed yield PDFs to be modelled based on few
samples. Higher values, on the other hand, allowed for good
modelling, but narrowed the choice of seeds, thus lowering the
diversity of varieties available for portfolio optimisation.

Setting the PYT lower than optimumwould have meant that we
would be choosing portfolios with a lower risk, but with a low
yield as well. Yet, setting the threshold too close to 100% would
have meant that we would be choosing only the most promising
seed variety, with perhaps a small portion of other ones, which
would be very risky and decreased yield in the long term (Fig. 9).
The far right point (100%) shows essentially the value of
improvement without portfolio optimisation (0.31%).

Fig. 10 illustrates the influence of CMM. Too low CMM left too
small values in the covariance matrix, making us too confident in
Table 6
Comparison of different regression methods.

Classification method RMSE Mean absolute
error

Correlation
coefficient (%)

k-NN (Cleary and Trigg,
1995)

14.674 11.863 20.26

Linear regression 11.201 9.005 26.09
Additive regression

(Friedman, 2002)
11.056 8.742 28.15

Regression by discretisation 12.652 10.172 24.97
ANN (multilayer

perceptron)
29.159 23.050 11.00

REPTree 13.508 11.035 19.49
equ-WHR 10.446 8.374 20.36
con-WHR (2-fold CV) 10.198 8.216 20.86
con-WHR (10-fold CV) 10.256 8.405 16.33
unc-WHR (2-fold CV) 9.313 7.365 41.71
unc-WHR (10-fold CV) 9.342 7.485 33.38

Fig. 9. Portfolio yield threshold vs. yield improvement.
the predicted yields. With such a covariance matrix we would
choose only the most promising variety with perhaps a small
portion of others that lower the insecurity. Too high CMM resulted
in too big portion of these ‘‘backup” varieties taking the focus off
the most promising one.

The statistics for test farms from 2014, are shown in Table 8. We
see that our method brought improvement to more than 80% of
farms. There were ones where the portfolio yield was below
average, but on the other hand, there were farms with the yield
improved for as much as 23%. In Fig. 11, we showed the difference
between average yields on the test farms and yields of the
portfolios.



Fig. 10. Covariance matrix multiplier vs. average yield improvement on test farms.

Table 8
Statistics for test farms.

Biggest improvement 23.02%
Biggest decrease �8.18%
Mean improvement 4.87%
Percentage of farms which witnessed improvement 82.86%

Fig. 11. Portfolio yield (triangles) vs. average yield at test farms (circles).
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5. Discussion and conclusion

We showed that WHR is a very useful tool which in the case of
yield prediction performed far better than conventional algo-
rithms. The reason is that it does not discard any information in
contrast to k-NN and it is more controllable than ANN, allowing
for further optimisation to take place. As for the regression trees,
the problem is that they are nondeterministic polynomial-time
complete (NP-complete) (Hyafil and Rivest, 1976). In practice,
greedy algorithms are used, but they are only locally optimal. Also
the advantage of WHR over ANNs and regression trees is that it is
much faster. It is interesting that although unc-WHR had lower
error than con-WHR, con-WHR proved to be a better option. The
reason is that having no constraints allowed unc-WHR to overfit
the data, which is always a possibility with optimisation of regres-
sion and classification algorithms and insufficiently large datasets.
What we also showed is that when it comes to seed selection,
using portfolio optimisation increases the yield improvement for
more than 15 times, comparing to the case where only the single
most promising variety is chosen. This proves what we intuitively
known, that diversifying the investment, i.e. spreading the risk
over a few seed varieties, is a wise strategy. The extreme case of
diversification is planting all available seed varieties on a farm. It
includes both those varieties that are suitable for the particular
weather and soil conditions and those that are not and these extras
and losses in yield even out. Although not feasible in practice, such
a strategy minimises the risk and it is exactly what we compared
our portfolio to. The fact that our portfolio selection strategy
outperformed the minimal-risk solution confirms its effectiveness
and high potential for practical use.

It is important to mention that not all seed varieties were
planted at all the test farms. Often, the varieties we recognised
as the most promising were not planted. We could not consider
them in the portfolio optimisation, because we were not able to
calculate the true yield of that portfolio. We thus believe that our
results would be even better if we had more data, especially for
the soy varieties which were planted on few farms.

Generally in agriculture, achieving high yield is not a problem,
but it comes at a price of high investments in irrigation, pesticides
and mechanisation. The biggest advantage of the method proposed
in this paper is that we proved that the yield can be increased in a
reliable way with no additional costs whatsoever. Therefore, we
believe that our work was a valuable contribution to Syngenta Crop
Challenge and is applicable for any other practical case where
historical data is available.
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