Dataset Open Access

EDEN2020 Human Brain MRI Datasets for Healthy Volunteers

Castellano, Antonella; Pieri, Valentina; Galvan, Stefano; Rodriguez y Baena, Ferdinando; Falini, Andrea


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_0866.zip"
      }, 
      "checksum": "md5:df3d0c1861c71fb7830044e2170e4f91", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_0866.zip", 
      "type": "zip", 
      "size": 491529815
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_0933.zip"
      }, 
      "checksum": "md5:7aa43fd122fa8fd3a216b01ceca05e24", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_0933.zip", 
      "type": "zip", 
      "size": 431665372
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_1277.zip"
      }, 
      "checksum": "md5:82a3858df7ff6dbafa34f053b515983c", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_1277.zip", 
      "type": "zip", 
      "size": 480541438
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_1686.zip"
      }, 
      "checksum": "md5:6b6d8e21596ec1286e4f6dbe2f6f823f", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_1686.zip", 
      "type": "zip", 
      "size": 446319269
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_2020.zip"
      }, 
      "checksum": "md5:eced02b3490f1aa88013d1a306a0bb33", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_2020.zip", 
      "type": "zip", 
      "size": 451072476
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_2476.zip"
      }, 
      "checksum": "md5:4d5c95bb775e436beceb0a096e4c608f", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_2476.zip", 
      "type": "zip", 
      "size": 440468198
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_3352.zip"
      }, 
      "checksum": "md5:f160d356f3a10247bd6976105ca6ebd4", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_3352.zip", 
      "type": "zip", 
      "size": 456001068
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_4871.zip"
      }, 
      "checksum": "md5:47bf407fc8eff932b320f4925c999ccc", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_4871.zip", 
      "type": "zip", 
      "size": 509113153
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_5069.zip"
      }, 
      "checksum": "md5:e49e6e22bc06f80cb28ac547736dbf84", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_5069.zip", 
      "type": "zip", 
      "size": 545420720
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_5361.zip"
      }, 
      "checksum": "md5:53c7e8690d1536c2e1f2cd98608dac2a", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_5361.zip", 
      "type": "zip", 
      "size": 404556837
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_5900.zip"
      }, 
      "checksum": "md5:8f16a811a387159862b596bd1304c09c", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_5900.zip", 
      "type": "zip", 
      "size": 436189250
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_5960.zip"
      }, 
      "checksum": "md5:de6226940f7ce947cdda06c400990e22", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_5960.zip", 
      "type": "zip", 
      "size": 436589961
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_6685.zip"
      }, 
      "checksum": "md5:379dc0a1cf20c57a3f2b502b7abfede8", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_6685.zip", 
      "type": "zip", 
      "size": 443719572
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_8275.zip"
      }, 
      "checksum": "md5:84f06997887050241175b3a5489f9f77", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_8275.zip", 
      "type": "zip", 
      "size": 481056148
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/CTRL_9647.zip"
      }, 
      "checksum": "md5:b0956d2f7cf93528e04d7901f31eeb55", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "CTRL_9647.zip", 
      "type": "zip", 
      "size": 467683249
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd/Readme.md"
      }, 
      "checksum": "md5:7681547ae40a72b7d43301dd31c6a371", 
      "bucket": "568ad2e2-1af2-40e2-a24e-07061d849edd", 
      "key": "Readme.md", 
      "type": "md", 
      "size": 4560
    }
  ], 
  "owners": [
    72421
  ], 
  "doi": "10.5281/zenodo.3994749", 
  "stats": {
    "version_unique_downloads": 5.0, 
    "unique_views": 37.0, 
    "views": 41.0, 
    "version_views": 595.0, 
    "unique_downloads": 4.0, 
    "version_unique_views": 524.0, 
    "volume": 2342942317.0, 
    "version_downloads": 8.0, 
    "downloads": 7.0, 
    "version_volume": 2819923817.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3994749", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3338449", 
    "bucket": "https://zenodo.org/api/files/568ad2e2-1af2-40e2-a24e-07061d849edd", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3338449.svg", 
    "html": "https://zenodo.org/record/3994749", 
    "latest_html": "https://zenodo.org/record/3994749", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3994749.svg", 
    "latest": "https://zenodo.org/api/records/3994749"
  }, 
  "conceptdoi": "10.5281/zenodo.3338449", 
  "created": "2021-05-28T14:54:33.180654+00:00", 
  "updated": "2021-05-30T02:20:54.489873+00:00", 
  "conceptrecid": "3338449", 
  "revision": 3, 
  "id": 3994749, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3994749", 
    "version": "1.0", 
    "language": "eng", 
    "title": "EDEN2020 Human Brain MRI Datasets for Healthy Volunteers", 
    "license": {
      "id": "CC-BY-NC-ND-4.0"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3338449", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 1, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3338449"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3994749"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "eden2020"
      }
    ], 
    "grants": [
      {
        "code": "688279", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::688279"
        }, 
        "title": "Enhanced Delivery Ecosystem for Neurosurgery in 2020", 
        "acronym": "EDEN2020", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "MRI", 
      "HARDI", 
      "NODDI", 
      "DTI", 
      "Brain"
    ], 
    "publication_date": "2019-07-16", 
    "creators": [
      {
        "orcid": "0000-0002-4137-9016", 
        "affiliation": "Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milano, Italy", 
        "name": "Castellano, Antonella"
      }, 
      {
        "orcid": "0000-0001-9244-3834", 
        "affiliation": "Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milano, Italy", 
        "name": "Pieri, Valentina"
      }, 
      {
        "orcid": "0000-0001-9337-4156", 
        "affiliation": "Imperial College London", 
        "name": "Galvan, Stefano"
      }, 
      {
        "orcid": "0000-0002-5199-9083", 
        "affiliation": "Imperial College London", 
        "name": "Rodriguez y Baena, Ferdinando"
      }, 
      {
        "orcid": "0000-0002-1461-8755", 
        "affiliation": "Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milano, Italy", 
        "name": "Falini, Andrea"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "description": "<p>High-resolution&nbsp; MR datasets of a cohort of 15 healthy adult subjects acquired on&nbsp; a&nbsp; 3T&nbsp; scanner&nbsp; at&nbsp; the Neuroradiology Unit and CERMAC (Center&nbsp; of Excellence for High Field Magnetic Resonance), Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milano, Italy. The data includes:</p>\n\n<ul>\n\t<li>T1_3D_PROSET_Sag:&nbsp; T1-weighted&nbsp; volumetric&nbsp; sequence&nbsp; acquired&nbsp; on&nbsp; the sagittal plane for&nbsp; morphological&nbsp; characterization.&nbsp; This&nbsp; sequence&nbsp; demonstrates&nbsp; difference&nbsp; in&nbsp; the&nbsp; T1 relaxation time of tissues and provide excellent contrast between GM and WM.</li>\n\t<li>3D_FLAIR_Tra: Fluid\u2011Attenuated Inversion Recovery volumetric sequence acquired on the axial planefor morphological characterization. This is an inversion recovery sequence with a long inversion time (TI), which results in removing signal from the cerebrospinal fluid from the images.</li>\n\t<li>SWIp_axial: Susceptibility\u2011Weighted Imaging sequence acquired on the axial plane.This&nbsp; is&nbsp; a three-dimensional&nbsp; high-spatial&nbsp; resolution&nbsp; Gradient&nbsp; Echo&nbsp; MRI&nbsp; sequence providing excellent contrast for venous vascular modeling.</li>\n\t<li>s3DI_MC_HR: three\u2011dimensional&nbsp;&nbsp; high\u2011resolution&nbsp;&nbsp; time\u2011of\u2011flight&nbsp;&nbsp; (TOF)&nbsp;&nbsp; MR angiography&nbsp; acquisition&nbsp; to visualize&nbsp; flow&nbsp; within&nbsp; the&nbsp; arterial&nbsp; vessel.&nbsp; It&nbsp; is&nbsp; based&nbsp; on&nbsp; the phenomenon of flow-related enhancement of spins entering into an imaging slice. As a result of being unsaturated, these spins give more signal that surrounding stationary spins.</li>\n\t<li>MIP_s3DI_MC_HR:&nbsp; angiographic&nbsp; 3D&nbsp; visualization&nbsp; of&nbsp; TOF&nbsp; images&nbsp; using&nbsp; the maximum intensity projection (MIP) technique of reconstruction.</li>\n\t<li>raw_data_DTI_32: Diffusion Tensor Imaging raw data. This is a diffusion-weighted Spin&nbsp; Echo&nbsp; EPI&nbsp; single-shot&nbsp; pulse&nbsp; sequence&nbsp; acquired&nbsp; on&nbsp; the axial&nbsp; planealong&nbsp; 32&nbsp; gradient directions at a b-value of 1000 s/mm<sup>2</sup> and one volume without diffusion-weighting (b0 image).</li>\n\t<li>raw_data_NODDI: multi-compartmental dMRI sequence for advanced tractography and&nbsp; NODDI&nbsp; analyses,&nbsp; including&nbsp; an&nbsp; axial&nbsp; high&nbsp; angular&nbsp; resolution&nbsp; diffusion-weighted&nbsp; imaging (HARDI) acquisition along 60 gradient directions at a b-value of 3000 s/mm<sup>2</sup>,a DTI acquisition along 35 directions at a b-value of 711 s/mm<sup>2</sup> and 11 volumes without diffusion-weighting&nbsp; (b0&nbsp; images).&nbsp; The&nbsp; phase-encoding&nbsp; direction was &nbsp;anterior-to-posterior for all these acquisitions.</li>\n\t<li>B0_reverse: a sequence without diffusion-weighting having the same geometrical parameters of the &lsquo;raw_data_NODDI&rsquo; images, but acquired using a reversed phase-encoding direction&nbsp;(posterior-to-anterior).&nbsp;&nbsp; This&nbsp;&nbsp; volume&nbsp;&nbsp; allowed&nbsp; &nbsp;estimation&nbsp;&nbsp; and&nbsp;&nbsp; correction for susceptibility-induced distortions.</li>\n</ul>\n\n<p>&lsquo;DTI&rsquo; Folder&rsquo;: This folder contains the DTI-derived parametric maps calculated off-linefrom the &lsquo;raw_data_DTI_32&rsquo; acquisition (32 gradient directions, b-value = 1000 s/mm<sup>2</sup>) and saved in the NIfTI-1 Data Format.</p>\n\n<p>&lsquo;HARDI&rsquo; Folder: This folder contains the parametric maps calculated off-linefrom the HARDI acquisition (60 gradient directions, b-value = 3000 s/mm<sup>2</sup>) of the &lsquo;raw_data_NODDI&rsquo; sequence. Maps are saved in the NIfTI-1 Data Format.</p>\n\n<p>&lsquo;Tractography&rsquo; Folder: This&nbsp; folder&nbsp; contains&nbsp; the&nbsp; probabilistic&nbsp; tractography&nbsp; reconstructions&nbsp; of&nbsp; the&nbsp; main&nbsp; white&nbsp; matter&nbsp; fiber tracts,&nbsp; calculated&nbsp; from&nbsp; the&nbsp; HARDI&nbsp; acquisition (60&nbsp; gradient&nbsp; directions, b-value&nbsp; =&nbsp; 3000&nbsp; s/mm<sup>2</sup>)&nbsp; of&nbsp; the &lsquo;raw_data_NODDI&rsquo; sequence. Dipy has been used for q-ball residual-bootstrap fiber tracking.&nbsp;The folder contains a minimum number of two pair of tracts for each subjects.</p>\n\n<p>&lsquo;NODDI&rsquo; Folder: This folder contains the Neurite orientation dispersion and density imaging (NODDI) parametric maps calculated off-line from the &lsquo;raw_data_NODDI&rsquo; acquisition (60 gradient directions at b=3000 s/mm<sup>2</sup>, 35&nbsp; gradient&nbsp; directions&nbsp; at b=711&nbsp; s/mm<sup>2&nbsp;</sup>and&nbsp; 11&nbsp; b0&nbsp; volumes)&nbsp; and&nbsp; saved&nbsp; in&nbsp; the&nbsp; NIfTI-1&nbsp; Data&nbsp; Format. Maps have been generated using the NODDI Matlab Toolbox (https://www.nitrc.org/projects/noddi_toolbox).</p>\n\n<p>Note that all MRI data files were converted from DICOM series using&nbsp;Chris Rorden&#39;s dcm2niiX version v1.0.20200331.</p>\n\n<p>&nbsp;</p>"
  }
}
595
8
views
downloads
All versions This version
Views 59541
Downloads 87
Data volume 2.8 GB2.3 GB
Unique views 52437
Unique downloads 54

Share

Cite as