Journal article Open Access
Dzmitry V. Yakimchuk;
Victoria D. Bundyukova;
Jon Ustarroz;
Herman Terryn;
Kitty Baert;
Artem L. Kozlovskiy;
Maxim V. Zdorovets;
Soslan A. Khubezhov;
Alex V. Trukhanov;
Sergei V. Trukhanov;
Larissa V. Panina;
Grigory M. Arzumanyan;
Kahramon Z. Mamatkulov;
Daria I. Tishkevich;
Egor Y. Kaniukov;
Vladimir Sivakov
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-08-06</subfield> </datafield> <controlfield tag="005">20200821005922.0</controlfield> <controlfield tag="001">3993464</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:3993464</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>The modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures&rsquo; morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam.</p></subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus</subfield> <subfield code="a">Victoria D. Bundyukova</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department Materials and Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 5, 1050 Brussels, Belgium & ChemSIN—Chemstry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxcelles, Campus de la Plaine, Boulevard du Triomphe 2, CP 255. 1050 Brussels, Belgium</subfield> <subfield code="a">Jon Ustarroz</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department Materials and Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 5, 1050 Brussels, Belgium</subfield> <subfield code="a">Herman Terryn</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department Materials and Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 5, 1050 Brussels, Belgium</subfield> <subfield code="a">Kitty Baert</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Laboratory of Solid State Physics, The Institute of Nuclear Physics, Ibragimov Str. 1, Nur-Sultan 050032, Kazakhstan & Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Mirzoyan Str. 2, Nur-Sultan 010008, Kazakhstan</subfield> <subfield code="a">Artem L. Kozlovskiy</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Laboratory of Solid State Physics, The Institute of Nuclear Physics, Ibragimov Str. 1, Nur-Sultan 050032, Kazakhstan & Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Mirzoyan Str. 2, Nur-Sultan 010008, Kazakhstan & Department of Intelligent Information Technologies, Ural Federal University, Prospekt Lenina 51, 620002 Yekaterinburg, Russia</subfield> <subfield code="a">Maxim V. Zdorovets</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Physics, North-Ossetian State University, Vatutina Str. 46, 362025 Vladikavkaz, Russia & Department of Physics and Engineering, ITMO University, Kronverkskiy Prospekt, St. 197101 Petersburg, Russia</subfield> <subfield code="a">Soslan A. Khubezhov</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus & Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia</subfield> <subfield code="a">Alex V. Trukhanov</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus & Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia</subfield> <subfield code="a">Sergei V. Trukhanov</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Electronic Materials Technology, National University of Science and Technology MISiS, 119049 Moscow, Russia</subfield> <subfield code="a">Larissa V. Panina</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Raman Spectroscopy (Centre "Nanobiophotonics"), Joint Institute for Nuclear Research, 6 St. Joliot-Curie, 141980 Dubna, Russia & Faculty of Nanotechnologies and New Materials, Dubna State University, Ulitsa Universitetskaya, 19, 141982 Dubna, Russia</subfield> <subfield code="a">Grigory M. Arzumanyan</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Raman Spectroscopy (Centre "Nanobiophotonics"), Joint Institute for Nuclear Research, 6 St. Joliot-Curie, 141980 Dubna, Russia</subfield> <subfield code="a">Kahramon Z. Mamatkulov</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus & Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia</subfield> <subfield code="a">Daria I. Tishkevich</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia & Department of Electronic Materials Technology, National University of Science and Technology MISiS, 119049 Moscow, Russia</subfield> <subfield code="a">Egor Y. Kaniukov</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Departament of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany</subfield> <subfield code="0">(orcid)0000-0002-3272-501X</subfield> <subfield code="a">Vladimir Sivakov</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2891434</subfield> <subfield code="z">md5:b67bc78fb0068a8a5f8b9cd3082f4109</subfield> <subfield code="u">https://zenodo.org/record/3993464/files/sensors-20-04397-v2.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus</subfield> <subfield code="a">Dzmitry V. Yakimchuk</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">gold</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">nanostructures</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">template synthesis</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">X-ray diffraction</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">X-ray photoelectron spectroscopy</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">growth mechanism</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">SERS</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.3390/s20164397</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">778308</subfield> <subfield code="a">Physical principles of the creation of novel SPINtronic materials on the base of MULTIlayered metal-oxide FILMs for magnetic sensors and MRAM</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> </record>
Views | 43 |
Downloads | 34 |
Data volume | 98.3 MB |
Unique views | 39 |
Unique downloads | 30 |