Journal article Open Access
Dzmitry V. Yakimchuk;
Victoria D. Bundyukova;
Jon Ustarroz;
Herman Terryn;
Kitty Baert;
Artem L. Kozlovskiy;
Maxim V. Zdorovets;
Soslan A. Khubezhov;
Alex V. Trukhanov;
Sergei V. Trukhanov;
Larissa V. Panina;
Grigory M. Arzumanyan;
Kahramon Z. Mamatkulov;
Daria I. Tishkevich;
Egor Y. Kaniukov;
Vladimir Sivakov
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3993464</identifier> <creators> <creator> <creatorName>Dzmitry V. Yakimchuk</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus</affiliation> </creator> <creator> <creatorName>Victoria D. Bundyukova</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus</affiliation> </creator> <creator> <creatorName>Jon Ustarroz</creatorName> <affiliation>Department Materials and Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 5, 1050 Brussels, Belgium & ChemSIN—Chemstry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxcelles, Campus de la Plaine, Boulevard du Triomphe 2, CP 255. 1050 Brussels, Belgium</affiliation> </creator> <creator> <creatorName>Herman Terryn</creatorName> <affiliation>Department Materials and Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 5, 1050 Brussels, Belgium</affiliation> </creator> <creator> <creatorName>Kitty Baert</creatorName> <affiliation>Department Materials and Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 5, 1050 Brussels, Belgium</affiliation> </creator> <creator> <creatorName>Artem L. Kozlovskiy</creatorName> <affiliation>Laboratory of Solid State Physics, The Institute of Nuclear Physics, Ibragimov Str. 1, Nur-Sultan 050032, Kazakhstan & Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Mirzoyan Str. 2, Nur-Sultan 010008, Kazakhstan</affiliation> </creator> <creator> <creatorName>Maxim V. Zdorovets</creatorName> <affiliation>Laboratory of Solid State Physics, The Institute of Nuclear Physics, Ibragimov Str. 1, Nur-Sultan 050032, Kazakhstan & Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Mirzoyan Str. 2, Nur-Sultan 010008, Kazakhstan & Department of Intelligent Information Technologies, Ural Federal University, Prospekt Lenina 51, 620002 Yekaterinburg, Russia</affiliation> </creator> <creator> <creatorName>Soslan A. Khubezhov</creatorName> <affiliation>Department of Physics, North-Ossetian State University, Vatutina Str. 46, 362025 Vladikavkaz, Russia & Department of Physics and Engineering, ITMO University, Kronverkskiy Prospekt, St. 197101 Petersburg, Russia</affiliation> </creator> <creator> <creatorName>Alex V. Trukhanov</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus & Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia</affiliation> </creator> <creator> <creatorName>Sergei V. Trukhanov</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus & Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia</affiliation> </creator> <creator> <creatorName>Larissa V. Panina</creatorName> <affiliation>Department of Electronic Materials Technology, National University of Science and Technology MISiS, 119049 Moscow, Russia</affiliation> </creator> <creator> <creatorName>Grigory M. Arzumanyan</creatorName> <affiliation>Department of Raman Spectroscopy (Centre "Nanobiophotonics"), Joint Institute for Nuclear Research, 6 St. Joliot-Curie, 141980 Dubna, Russia & Faculty of Nanotechnologies and New Materials, Dubna State University, Ulitsa Universitetskaya, 19, 141982 Dubna, Russia</affiliation> </creator> <creator> <creatorName>Kahramon Z. Mamatkulov</creatorName> <affiliation>Department of Raman Spectroscopy (Centre "Nanobiophotonics"), Joint Institute for Nuclear Research, 6 St. Joliot-Curie, 141980 Dubna, Russia</affiliation> </creator> <creator> <creatorName>Daria I. Tishkevich</creatorName> <affiliation>Cryogenic Research Division, Scientific-Practical Materials Research Centre, NAS of Belarus, 220072 Minsk, Belarus & Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia</affiliation> </creator> <creator> <creatorName>Egor Y. Kaniukov</creatorName> <affiliation>Laboratory of Single Crystal Growth, South Ural State University, Lenin prospekt, Chelyabinsk 76, 454080 Chelyabinsk, Russia & Department of Electronic Materials Technology, National University of Science and Technology MISiS, 119049 Moscow, Russia</affiliation> </creator> <creator> <creatorName>Vladimir Sivakov</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3272-501X</nameIdentifier> <affiliation>Departament of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany</affiliation> </creator> </creators> <titles> <title>Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>gold</subject> <subject>nanostructures</subject> <subject>template synthesis</subject> <subject>X-ray diffraction</subject> <subject>X-ray photoelectron spectroscopy</subject> <subject>growth mechanism</subject> <subject>SERS</subject> </subjects> <dates> <date dateType="Issued">2020-08-06</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3993464</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3390/s20164397</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures&rsquo; morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/778308/">778308</awardNumber> <awardTitle>Physical principles of the creation of novel SPINtronic materials on the base of MULTIlayered metal-oxide FILMs for magnetic sensors and MRAM</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 43 |
Downloads | 34 |
Data volume | 98.3 MB |
Unique views | 39 |
Unique downloads | 30 |