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Abstract

With the advent of data-driven statistical modeling and abundant computing power,
researchers are turning increasingly to deep learning for audio synthesis. These methods
try to model audio signals directly in the time or frequency domain. In the interest of
more flexible control over the generated sound, it could be more useful to work with a
parametric representation of the signal which corresponds more directly to the musical
attributes such as pitch, dynamics and timbre. These parametric representations also
facilitate better musical control of the synthesized output. We present VaPar Synth - a
Variational Parametric Synthesizer which utilizes a conditional variational autoencoder
trained on a suitable parametric representation. We demonstrate our proposed model’s
capabilities via the reconstruction and generation of instrumental tones with flexible
control over their pitch. We also investigate a parametric model for violin tones, in
particular the generative modeling of the residual bow noise to make for more natural
tone quality. To aid in our analysis, we introduce a dataset of Carnatic Violin Recordings
where bow noise is an integral part of the playing style of higher pitched notes in
specific gestural contexts. We obtain insights about each of the harmonic and residual
components of the signal, as well as their interdependence, via observations on the
latent space derived in the course of variational encoding of the spectral envelopes of
the sustained sounds.

Index Terms - Generative Models, Conditional VAE, Source-Filter Model, Spectral
Modeling Synthesis
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Chapter 1

Introduction

1.1 Motivation

When you hear about Audio or Music Synthesis, one of the classic synthesizers by
Yamaha or Casio, or even Moog like the one shown in Figure 1.1 must be coming to
mind. Indeed, audio synthesis is ‘synthesizing’ music by controlling parameters like
the pitch (the notes being played), the loudness and the timbre (the instrument being
played). In ‘120 Years of Electronic Music’1, the author defines an ‘Electronic Musical
Instrument’ as “instruments that generate sounds from a purely electronic source as
opposed to generating them electro-mechanically or electro-accoustically”.

Figure 1.1: Moog Modular Synthesizer2

With the advent of digital computing in the 70s, there was motivation to use the
digital computer as a musical instrument, stemming from the realization that all of
these operations could be performed on digital computers [1]. Quite a bit of the work in
digital music synthesis has been motivated by its earlier analog counterparts. At its heart
however, they primarily relied on signal processing methods to model the instruments,
namely Physical Modeling and Spectral Modeling Synthesis.

Recently, with the advent of data-driven statistical modeling, and the availability
of abundant computing power with GPUs, people have begun using Deep Learning

1https://120years.net/
2https://en.wikipedia.org/wiki/Moog_synthesizer
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1.2 Thesis Organization

for audio synthesis, which has aptly been labeled as “Neural Audio Synthesis”. These
models primarily rely on the ability of neural networks to extract musically relevant
information from tons of available recordings. As opposed to modeling the complicated
instrument physics, neural networks can implicitly learn the complex factors underlying
the sound. Thus, natural sounds can be generated by the model when trained on
a dataset consisting of isolated musical notes being played with different styles and
loudness.

With this in mind, our idea of a ‘generative synth’ could be an algorithm which can
take as input control parameters and give us as output the audio signal corresponding
to those parameters. Figure 1.2 shows such a model.

Synth
timbre

pitch

loudness
Figure 1.2: ‘Generative Synth’ with controllable parameters

1.2 Thesis Organization

From Chapter 2 of this thesis, we begin by discussing classical methods of audio syn-
thesis, followed by the more modern generative models for audio synthesis. Chapter 3
extensively discusses the datasets we employ for our tasks. It also introduces and de-
scribes in detail the Carnatic Violin Dataset we record. Chapter 4 explains the para-
metric models we employ for audio, and the generative networks we use. Chapter 5 and
Chapter 6 elaborate upon the various experiments we perform and the accompanying
analysis of the results we obtain.

Parts of this thesis include research work that has either been accepted or submitted
to various Conferences. Refer to List of Publications for more details on the publications.
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Chapter 2

Audio Synthesis

2.1 Physical Modeling Synthesis

Physical models try to emulate the process of sound generation by modeling the under-
lying physics and dynamics of the process. The motivation behind this is the fact that
the “source of life in most acoustic instruments is Resonance” [2].

At the heart of simulating any stringed instrument is the wave equation,

K
∂2y

∂x2
= ε

∂2y

∂t2
. (2.1)

Where K is the string tension and ε is the string mass density. There are different ways
to model the instrument physically [3], two of which are,

1. State Space models.

2. Digital Waveguide models.

Both the methods try to solve Equation 2.1 by converting it into a discrete-time system,
and modeling it as a linear system [3].

z−1

z−N
y[n] y[n−N ]

×0.5

×0.5

Figure 2.1: Flow graph for the Karplus Strong algorithm

The Karplus Strong algorithm is a precursor to the digital waveguide model which
attempts to mimic the sound of plucked string. It does so by filtering a waveform in a
feedback fashion as shown in Figure 2.1. The z−N delay also functions as a buffer, and
it is initially filled with white noise samples. The transfer function of the model is akin
to a feedback IIR filter (or a comb filter) and if the parameters are chosen appropriately,
it can model the sound of a plucked string, like a guitar.

3



2.2 Spectral Modeling Synthesis

The major advantage of the physical modeling technique is the freedom it offers to
control any musically relevant aspect of the synthesized audio by modeling the under-
lying physics into the dynamical system. However, at the same time, you are limited
by the accuracy of the model i.e. if the physics is too complicated to model, you might
have to simplify it, thus affecting the sound synthesized. Another issue occurs when you
have to synthesize in real-time, as the process to simulate the dynamical system is often
expensive and needs fast computation.

2.2 Spectral Modeling Synthesis

From the previous section, we saw that physical models are useful to describe sounds
whose generation dynamics are known apriori. Moreover, physical models mimic the
dynamics of synthesis by behaving like the ‘sound source’, but, from psycho-physics
studies1 of the ear, we see that the ear behaves like a harmonic analyzer. Thus, it makes
more sense to construct a model which models the synthesis at the ‘receiver’. This the
major motivation to move on to another synthesis technique, namely Spectral Modeling
Synthesis (SMS) by Serra et al. [4, 5].

SMS aims to model the spectral content of audio with the aim to obtain “musically
useful representations” which make it possible to ‘Transform’ and ‘Reconstruct’ the
sound easily, as shown in Figure 2.2,

x(t) Transformation Synthesis y(t)Analysis

Figure 2.2: Analysis - Transformation - Synthesis pipeline

where x(t) is the input audio, and y(t) is the transformed audio.
One of the two major underlying assumptions in the Spectral models to be dis-

cussed ahead is that the signal can be broken down into a ‘Sinusoidal’ component and
a ‘Stochastic’ component as follows,

x = xsine + xstochastic, (2.2)

where xsine is the ‘deterministic component of the signal, and xstochastic is the ‘random’
one. The deterministic part is one that can be written as a sum of sinusoidal signals,
and the random part is the one that effectively cannot.

Since we are working with harmonic signals, the Fourier Transform is the first analy-
sis tool that comes to mind. A simple extension to analyze non-stationary signals is the
Short Time Fourier Transform (STFT), which assumes that the signal can be broken
down into smaller segments where it can be assumes to be stationary. The transforma-
tion is,

Xl(k) :=
N−1∑
n=0

w(n)x(n+ lH)e−jωkn, (2.3)

where x(n) is the signal, w(n) is an appropriate windowing function, N is the window
size and H is the hop size. N governs the trade-off between the frequency and time
resolution and w(n) controls the side-band leakage.

Serra et al. [4, 5] present the following 3 methods of spectral modeling in their work,
each of which shall be explored in detail.

1http://artsites.ucsc.edu/ems/music/tech_background/te-03/teces_03.html
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2.2 Spectral Modeling Synthesis

1. Sinusoidal Modeling.

2. Deterministic + Residual Modeling.

3. Deterministic + Stochastic Modeling.

2.2.1 Sinusoidal Modeling

As the name suggests, the signal is modelled as a sum of time varying sinusoidal com-
ponents,

s(t) =

R∑
r=1

Ar(t)cos(θr(t)), (2.4)

θr(t) =

∫ t

0
ωτ (τ)dτ + θr(0) + φr, (2.5)

where R is the number of sinusoidal components, Ar(t) is the instantaneous amplitude
and θr(t) is the instantaneous phase. The analysis is performed as follows,

1. Peak picking - At each time frame, the local maxima in the short-time spectrum
of the frame have to be found. To obtain a more accurate estimate for the peak
frequency, three point parabolic interpolation is performed [6]. An example is
shown below in Figure 2.3.

0 0.5 1 1.5 2

−80

−60

−40

−20

0

Frequency (kHz)

M
a
g
n
it
u
d
e
(d

B
)

Spectrum
Harmonic Peaks

Figure 2.3: Spectral Peak Picking

2. Peak continuation - Once the peaks are obtained at each time frame, they have
to be continuously connected to each other. A heuristic approach to connect the
peaks is detailed in [4], shown below in Figure 2.4. The intuition is to connect
sinusoids that last for at least a minimum duration.

Thus, with the sinusoidal peaks across frames, you can add the constituent sinusoidal
signals to obtain the sinusoidal reconstruction of the audio. Issues arise when the signal
you try to model cannot be inherently modelled by sums of sinusoids. Consider an
extreme example of white noise, which has a flat spectrum. In that case, to capture

5



2.2 Spectral Modeling Synthesis

Figure 2.4: Connecting the spectral peaks across time frames (figure taken from [4])

the signal variablity, a very large number of sinusoids will be used. In spite of that, the
reconstructed signal will sound synthetic and artificial (you cannot expect to represent
white noise accurately only with sinusoidal functions). This motivates the introduction
of the next spectral modeling scheme, the Deterministic plus Residual Modeling.

2.2.2 Deterministic plus Residual Modeling

As discussed, if the sound is inherently ‘noisy’ (breathy part of speech, ocean sound
etc.), then, the sinusoidal model fails to model the sound. Thus the need to explicitly
model this ‘noisy’ component. Figure 2.5 shows the example of a violin spectrogram.
We can clearly see the harmonics, and can also observe the residual component (as the
‘noisy’ portion of the spectrogram).

In the Determinstic + Residual model (DpR), an additional constraint is enforced
on the sinusoidal component. Previously, the sinusoids were allowed to model all the
components of the audio signal, but now, they are restricted to model the partials of
sound i.e. the harmonics of the sound. This is motivated by looking at the generation
of sound by a musical instrument. Most of the energy goes to the modes of vibrations
i.e. the harmonics/partials of the sound, and the ‘noisiness’ comes from the excitation
mechanism(hammer striking the piano string, bow in the violin etc.) as opposed to the
vibration. Since the sinusoids are harmonically related, the method is also called the
Harmonic plus Residual (HpR) model, a name we will be using often ahead. The HpR
model represents a sound in the following way,

s(t) =

R∑
r=1

Ar(t)cos(θr(t)) + e(t), (2.6)

where θr(t) is defined as in Equation 2.4 and e(t) is the residual, which is obtained by
subtracting the deterministic component from the original signal. The major differences
from the Sinusoidal model is the restriction on the sinusoids to model only the partials,
which manifests itself in the Peak continutation process where unlike the sinusoidal
model, you only want to track partials as opposed to all the components. Serra in [4]
presents an algorithm to do so. The output of the algorithm is the clear and stable
partials of the sound.

The above approach tries to ensure that only the ‘non-noisy’ (or deterministic) part
of the signal is modelled in the reconstructed signal, thus we obtain the ‘residual’ or

6



2.2 Spectral Modeling Synthesis

Figure 2.5: Violin Spectrogram

the ‘noisy’ part of the signal by subtracting this reconstructed signal from the original.
The HpR model gives you the flexibility to modify individually the deterministic and
residual components. The addition of the residual makes the sound seem more ‘natural’
as opposed to explicitly modeling it with sinusoids. However, the residual is still not
a ‘flexible’ representation for transformation. This is motivation for the next model,
where an additional constraint is placed on the residual - that of being a stochastic
signal, which allows it to be more compactly represented.

2.2.3 Harmonic plus Stochastic Modeling

By assuming that the residual is a stochastic signal, we can write it as the output of a
linear time-variant system on white noise,

ê(t) =

∫ t

0
h(t, t− τ)u(τ)dτ, (2.7)

where u(t) is white noise and h(t, σ) is the impulse response of a slow time-varying filter
(impulse response at time t is h(t, .)). Instead of preserving the whole residue as it is,
you assume it is the output of a filter. Thus, all that needs to be done is determine the
coefficients of the filter. The filter representation used by Serra in [4] is simply the sub-
sampled version of the residual spectra. To sub-sample is to downsample the residual
spectrum, as shown below in Figure 2.6, which acts as the stochastic approximation of
the residual spectra. In Chapter 4, we present different method of modeling the residual
spectra, which builds on top of this one.

7



2.3 Generative Audio Synthesis
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Figure 2.6: Sub-sampling the residual spectrum

2.3 Generative Audio Synthesis

Physical and Spectral Modeling Synthesis are model driven procedures for audio syn-
thesis. “Neural Audio Synthesis” changes the game to that of using data-driven based
learning approaches to audio synthesis. How does this work then? These class of learn-
ing based approaches try to model the underlying distribution on which the data points
lie. Once that is learnt, these models can then ‘sample’ new data points from this dis-
tribution. In the context of audio, you can think of these as models from which we can
sample and thus ‘generate’ new audio. This is a very difficult thing to do without any
prior knowledge of the data distribution. This is where ‘Generative Models’ come in,
where neural networks are used to try and approximate the underlying data distribution.

Figure 2.7: Generative Models2

Figure 2.7 tries to explain how generative models work. They assume that the data
can be characterized by a unit Gaussian. They then use a neural network to estimate
the generated distribution, which they compare with the actual data through a loss
function which is minimized via a suitable optimizer (gradient descent, ADAM etc.). The
reason for choosing a Gaussian is because points sampled from a Gaussian distribution
can be arbitrarily transformed to any distribution with a suitable function [7]. The
neural network ‘learns’ that transforming function from the data. The generative model,

2https://openai.com/blog/generative-models/
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2.3 Generative Audio Synthesis

once trained can sample points from the learnt distribution, effectively ‘generating’ new
samples.

These models can work on different representations of audio (time/frequency). The
commonly used representations are,

1. Time domain waveform : The simplest representation of audio. It is essentially the
waveform samples. The advantage is its simplicity and the fact that you don’t have
to worry about phase to reconstruct the audio after transformation. However, for
coherent waveform synthesis, the model has to take into account information from
multiple timescales, which complicates the model architecture required. These
complicated architectures require large amounts of data and compute power to
train effectively.

2. Time-Frequency representation : As opposed to simply using the time domain
samples, one can use a Time-Frequency (TF) representation of the audio signal.
It is a 2-D input where one of the axes is time, and the other is frequency. There
are various TF representations,

(a) Short Time Fourier Transform : The simplest TF respresentation. Simply
involves stacking together the Fourier transform of windowed segments of the
audio at increasing time steps together. It was also discussed above in SMS.
Its main advantage is its simplicity. However, a major disadvantage is that to
perfectly invert the transformation, you need the phase information, which
is difficult to estimate after transforming the audio.

(b) Mel Frequency Spectrogram : Similar to the Mel Frequency Cepstral Co-
efficients in speech processing, this involves post processing the Short Time
Fourier Transform by filtering it with a melodic filterbank, followed by a non-
linear (log) transformation. This is motivated by our perception of different
frequencies, and by the logarithmic nature of our hearing. Like the above,
the major issue is with the need of the phase spectrum for perfect inversion.

(c) Constant-Q Transform : The CQ transform is a filter bank with logarithmi-
cally spaced filters and increasing bandwidth. The major advantage of this
is that it simultaneously offers better frequency resolution at low frequencies,
and better temporal resolution at higher frequency. However, a huge disad-
vantage is the non-invertibility of the transformation. This has been recently
improved by introducing the invertible CQ transform using non-stationary
Gabor frames [8].

(d) Wavelets : Tzanetakis et al. [9] explored the discrete wavelet features for
classification. However, these have not been explored in the context of audio
synthesis with deep learning models.

3. Parametric representation - We can use a parametric model for the audio like Phys-
ical models or Spectral models. An example is the Sinusoidal model as discussed
before in SMS. The advantages of this approach are manifold,

• A huge reduction in the number of control variables.

• Better control over audio synthesis if a suitable parametric model is chosen.

• No issue of phase invertibility like the TF representations. Given the param-
eters, the audio is easily synthesized.
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2.3 Generative Audio Synthesis

Keeping the above representations in mind, Generative Models for audio synthesis
broadly follow three different methodologies,

1. Sequential/Autoregressive - Generating the time domain waveform samples using
either sequential [10] or autoregressive networks [11].

2. Adversarial - Using Generative Adversarial Networks [12] to model either a time-
frequency representation of the audio, or the audio waveform directly.

3. Autoencoding - Framewise reconstruction of short-time magnitude spectra using
autoencoders [13].

2.3.1 Sequential/Autoregressive Generation

Sequential generation methods choose to work with audio directly in the waveform
domain. What they do is try to predict the next sample given the previous samples [14],
or try to predict the next frame given the previous sequence of frames [15]. Sequential
models use RNNs or LSTMs [10] to predict the samples/frames. Autoregressive networks
model the joint probability distribution in an autoregressive fashion i.e. each sample
depends on all the samples previous to it,

P (x̄) =

T∏
t=1

P (xt|xt−1, xt−2 . . . x1). (2.8)

They then use dilated convolutions3 [11] to implement this in an efficient and paralleliz-
able manner. WaveNet [11], which was used to model speech was heavily inspired by
previous work by the same authors on image generation, the PixelCNN [16].

The major issue with music is that it has longer temporal range as compared to
speech and hence it became necessary to use more information from previous samples
to capture long term structure, which increase the network complexity and size, and
slows down training. Engel et al. [17] modified the architecture of WaveNet by adding
an additional unit, a temporal encoder to take into account more temporal information
from past samples, as shown in Figure 2.8

A few disadvantages of autoregressive modeling are,

1. These are big networks, and thus require large amounts of data and resources
(GPUs) to train. As mentioned in their own repository4,

“Training for both these models is very expensive, and likely difficult for
many practical setups. Nevertheless, We’ve included training code for com-
pleteness and transparency. The WaveNet model takes around 10 days on
32 K40 gpus (synchronous) to converge at 200k iterations. The baseline
model takes about 5 days on 6 K40 gpus (asynchronous).”

One K40 GPU costs ≈1000$, so that’s 6000$ just for the baseline (forget the main
model, only Google can train it!). This presents a huge roadblock to researchers
who do not have access to such computation and resources.

3https://storage.googleapis.com/deepmind-live-cms/documents/

BlogPost-Fig2-Anim-160908-r01.gif
4https://github.com/magenta/magenta/tree/master/magenta/models/nsynth
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2.3 Generative Audio Synthesis

Figure 2.8: NSynth Temporal Encoder, [17]

2. It is not only the training that is expensive, generating waveforms from the above
network is also complicated. Generating 1 second of audio requires running the
network for almost an hour! Researchers are trying to overcome this difficulty
though through network level optimizations, like in Parallel-WaveNet [18].

2.3.2 Adversarial Generation

At the heart of adversarial generation lies the Generative Adversarial Network, more
commonly known in research as a GAN [12]. A GAN has two networks, a Generator
and a Discriminator. The generator generates samples, and the discriminator tries to
classify the sample as generated or actual. The authors in [12] argue that this is a
minimax game, and on convergence, the generator should ideally generate samples from
the data distribution.

Inspired by the success of GANs in generating highly realistic images [12], Donahue
et al. [19] were motivated to use GAN’s to generate time domain audio by modifying
the architecture to generate samples (WaveGAN). They also try to generate audio from
TF representations, namely the spectrogram. One of the major issues with the TF
representations is the issue of invertibility to obtain the time domain waveform. As you
do not preserve the phase information, the generated waveform is noisy. To deal with
these, Engel et al. [20] introduce GANSynth, which proposes modifications to the TF
representations and the network architecture to synthesize more coherent and less noisy
audio.

The previous issue of timescales does not arise here (at least with the TF represen-
tations). This is because the whole representation is modelled at once. Thus, at least in
principle, all the timescales involved in audio synthesis are taken care off. However, this
is at the cost of a lot of complications that arise during training the network. GANs are
very unstable to train. Modifications have been proposed to the architecture , inspite
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2.3 Generative Audio Synthesis

of which they take extremely long to train. The invertibility of the TF representation
is an additional challenge to consider.

2.3.3 Framewise Autoencoding

An autoencoder is an artificial neural network, with the added condition that the output
is same as the input. By modifying the architecture appropriately such that the network
is bottlenecked, the autoencoder obtains a lower dimensional representation of the input,
this effectively ’compressing’ it.
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Autoencoder

Figure 2.9: Framewise Autoencoder

Figure 2.9 shows the autoencoder for a single spectral frame as the input. The
process is repeated across all input spectral frames. During reconstruction, the same
issue of phase estimation arises as it did during the adversarial methods. To overcome
it, the obtained spectrogram is inverted using Griffin-Lim [21] to estimate the phase
spectrogram. Griffin-Lim iteratively estimates the phase spectrogram by beginning with
an initial random estimate, and then performing a series of STFTs and inverse STFTs
with the phase being updated at each step. With each iteration, the target is to converge
to the optimal phase spectrogram.

Sarroff et al. [22] were among the first to use autoencoders to perform frame-wise
reconstruction of short-time magnitude spectra. They were inspired to model an autoen-
coder using neural networks because, given ‘enough data’, these networks could learn
mappings from higher dimensional spaces to lower dimensional spaces, which could be
perceptually relevant to audio synthesis. Their main motivation to use the spectral
(FFT) based representation was that it could be inverted back into the time domain
(assuming the phase information is preserved). Their investigations revealed a ‘grain-
iness’ in the reconstructed sound, which could be attributed to using the Griffin-Lim
algorithm for phase estimation. They also claim that the use of a deep model by sim-
ply stacking more layers in the architecture does not necessarily improve the quality of
the reconstructed audio, which additionally implies that minimizing the spectral mean
squared error might not be optimal for audio perception.

Roche et al. [23] extended this analysis. With the release of NSynth [17], they were
able to harness the large number of instrument recordings to experiment with differ-
ent autoencoder architectures, namely variational and recurrent autoencoders. They
experimented with the network parameters for optimal reconstruction of magnitude
spectrograms, and also analyzed the so called ‘latent space’ which is essentially a low
dimensional representation of the input magnitude spectrogram. With inputs as 512
dimensional magnitude FFT vectors, the latent space dimensions explored were from
4-100. We also explore similar latent space dimensions in our models, which we shall
discuss in detail in Chapter 4. The authors also analyze the usability of this latent space
in the interpolation of sounds.
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2.4 Why Parametric?

One limitation acknowledged by the above authors was the lack of meaningful control
over the latent space for use in synthesis. Esling et al. [24] incorporated a regularization
term in the VAE latent space in order to effect some control over the perceptual timbre
of synthesized instruments. Through their experiments, they were able to ‘generate’
audio by sampling points from this latent space, and could also perform interpolation
in this space.

A common drawback of the previous methods is the lack of phase during the recon-
struction process, leading to an inherently lossy reconstruction of the audio. Another
issue is the frame-wise analysis-synthesis based reconstruction procedure, which does
not take into account the temporal evolution of the signal.

2.4 Why Parametric?

One commonality among all the methods discussed so far is that they choose to work
with the raw audio, either in the time domain or in the frequency domain. Consider
synthesis of a given instrument sound with flexible control over the pitch. Pitch shifting
without timbre modification, at least for speech requires the use of a source-filter model
with the filter (spectral envelope) being kept constant [25]. The advantage of paramet-
ric models are that they do not require us to model the audio waveform or spectrum
directly, rather we can work in the reduced parametric space. Combine this with the
generative modeling capabilities of a neural network, and you can obtain a powerful au-
dio synthesizer, one that can rely on small, simple network architectures, can be trained
with lesser data, and that can potentially generate high quality audio with musically
relevant control over it. Recognizing this in the context of speech synthesis, Blaauw
et al. [26] used a vocoder representation for speech, and then trained a VAE to model
the frame-wise spectral envelope. Engel et al. [27] realized this with their Differential
Digital Signal Processing pipeline, which used an autoencoder coupled with the HpR
model. However, they do not explicitly considers the modeling of the residual signal.

Julius Smith5 compares Physical Modeling to Spectral Modeling. With our survey
of generative models, we were inspired to extend the comparison by including generative
models.

Physical Modeling Spectral Modeling

Model only restricted sounds Model any general sound
Sound is expressive and natural Sound is not that expressive

Several Equations to solve Several operations to perform
Represents sound source Represents sound receiver

Generative Modeling

Depending on available data can model anything
Data-driven

Computationally Intensive
Represents either source or receiver depending on model and data

5https://ccrma.stanford.edu/~jos/kna/Projections_Future.html
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Chapter 3

Datasets Employed

At the heart of any machine learning based problem lies the dataset. Just like the
proverb “You are what you eat”, the equivalent phrase for machine learning would be
“Your model will only be as good the data you use in it”1. Of course, this is only partially
true, the other major component of the learning model is the optimizer to consider, that
is however a discussion for another thesis, not this one. Collecting and curating data
is a challenging task. People in the Computer Vision community have been doing so
since a long time, and hence there are many good quality annotated datasets available
for using deep learning models. The same cannot be said for audio however.

Considering our task of generation, we would ideally want a dataset that contains
recordings of notes being played. However, there are multiple things to take in con-
sideration, such as the quality of the note being played, the loudness of the note, the
playing style, the instrument being used etc. Keeping these in mind, we describe three
datasets. The first, NSynth [17] is a large repository of instrument note recordings for
multiple pitch and loudness values. The second, Good-sounds [28] is also an instrument
recording dataset, but with a fewer recordings and instruments taken into consideration.

The third dataset is a custom dataset that we record under a controlled setting.
We felt the need to record our own dataset because the previous two datsets were not
sufficient keeping in mind our target for controlled synthesis of expressive instrument
sounds. We shall now describe each dataset in detail.

But before describing the datasets used, we would first like to talk a bit about the
instrument we will be modeling in our work - the Violin. The Violin is a popular
instrument in Indian music, adopted from the West, due to its human voice-like timbre
and ability to produce continuous pitch movements [29]. What makes it a popular
choice in Carnatic music (classical music from Southern India) is its ability to produce
a continuous pitch variation. This is an important component of the melodic motifs of
raga music, that involve changing pitch and dynamics throughout the playing gesture.
Consider the task of synthesizing a violin solo for a Carnatic music concert. Let us
assume we have with us a dataset with a number of isolated notes at different pitches
corresponding to different Carnatic Ragas and played at a set of volume levels. Given
this, can we train a system for the synthesis of “natural sounding music” in the same
artist’s style given any ‘musical score’ containing the typical continuous gesture motifs?

1https://www.capgemini.com/2017/10/quality-data-a-must-have-for-ai/
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3.1 NSynth

3.1 NSynth

Introduced by Engel et al. [17] in 2017, NSynth2 (Neural Synth after the paper) is,
as of today, possibly the largest dataset for single instrument tones. The authors were
motivated to prepare such a large dataset, because, unlike in the case of images, such a
curated dataset did not exist for audio tasks.

The dataset consists of 305,979 musical note recordings sampled at Fs = 16 kHz,
each having a specific pitch, loudness and timbre. The pitch and loudness are specified
by their MIDI values. The MIDI pitch is the standard notation used in Western Music.
The relation between MIDI pitch p and pitch in Hz f0 is given by,

f0 = fref2
(p−69)/12, (3.1)

where fref is the reference or tuning frequency. From Equation 3.1, MIDI 69 corresponds
to fref . The loudness is specified by the MIDI velocity, which is the force with which the
piano key is struck. Both MIDI pitch and velocities are discrete integers which can take
values from 0 - 127.

For the NSynth dataset, the reference frequency fref is 440 Hz (or A4 for the piano
aficionados). The MIDI numbers range from 21-108, the range for a standard piano. The
MIDI velocities are five discrete values, [25,50,75,100,127]. Each note played is produced
by one of three ways - Acoustically (played on the acoustic instrument), Electronically
(played on an electronic instrument, like the electronic guitar) or Synthetically (syn-
thesized audio using a MIDI synth). There are 11 instrument classes in total - bass,
brass, flute, guitar, keyboard, mallet, organ, reed, string, synth lead and vocal. Each
note is further characterized by a note quality, which describes the note and how it was
recorded.

There is a ‘String’ class of instruments. However, the authors have not detailed
whether the recordings are solely from the violin, or whether they are from the viola (or
possibly cello) as well. Thus, this dataset is insufficient for our final goal of controlled
and expressive violin audio synthesis.

3.2 Good-Sounds

As the name suggest, Good-Sounds [28] is literally a recording of notes being played
in a ‘good’ manner, with the annotation being done by music teachers. Part of a
bigger corpus (which includes bad notes as well). It consists of two kinds of recordings
(individual notes and scales) for 12 different instruments sampled at Fs = 48 kHz. We
select the violin subset of the data. The recordings have been labeled for played as good
and bad. We use only ‘good’ recordings, all of which are played in a fixed mezzo-forte
(medium) loudness on a single violin. We choose to work with the 4th octave (MIDI
60-71) representing mid-pitch range. The number of notes per MIDI number, and the
average duration per note are summarized in Figure 3.1 and Table 3.1 respectively.

The data was collected by recording professional musicians (with a degree in music)
playing the notes in isolation. The violin recordings are good, but they are limited in
expressivity (fixed loudness and playing style). We perform the initial set of experiments
with this dataset, but the lack of expressivity motivated us to record and create our own
dataset.

2https://magenta.tensorflow.org/datasets/nsynth
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3.3 Carnatic Violin Dataset
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Figure 3.1: Recordings per Note

MIDI 60 61 62 63 64 65
Duration 4.4 4.7 5.2 4.8 4.9 4.7

MIDI 66 67 68 69 70 71
Duration 4.3 4.5 4.3 5.0 4.5 4.6

Table 3.1: Average note duration (s)

3.3 Carnatic Violin Dataset

There does not exist a publicly available dataset suitable for synthesis of Carnatic Music,
especially for the violin. NSynth [17] is a large musical note recording dataset. Good-
sounds [28] is also a similar dataset consisting of musical notes and scales recorded for
different instruments. However, both of these dataset work with the MIDI notes and
are not that expressive. Keeping in mind our task of expressive synthesis, we would
ideally like a dataset which is recorded keeping in mind the Carnatic playing style.
We recorded an experienced Carnatic violinist playing a set of Carnatic scale notes at
various loudness, playing styles and Ragas.

3.3.1 Recording Room

The dataset was recorded in an anechoic recording chamber as shown in Figure 3.2
(showing the main microphone mounted on the stand) and Figure 3.3.

Figure 3.2: Room Front Figure 3.3: Room Rear

The blanket was wrapped around the table to minimize any reverberations due to
the table itself (as it could not be removed from the room, turns out it was assem-
bled (permanently) inside the room!). Figure 3.4 shows the recording position of the
Behringer mic near the bridge of the violin. The Roland recorder was placed on the
floor near the violinist.

3.3.2 Recording Devices

Regarding the recording devices, we used the following two -
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3.3 Carnatic Violin Dataset

Figure 3.4: Recording Position of Main Mic

1. Behringer ECM80003 Ultra Linear Condenser mic - This has a relatively flat fre-
quency response from 5 Hz to 20 kHz, hence useful when recording instruments.

2. Roland R-09HR4 High Resolution Recorder - This device affected our recordings
by attenuating the frequencies in certain bands, somewhat like a low pass filter
with cutoff around 3 kHz. (We do not know why exactly this attenuation occured,
maybe the internal recorder low passed the incoming audio). However, we see
opportunity in this! This data can be used to test if models can improve the
quality of the recording (some kind of inverse filtering).

To obtain the recordings from the Behringer, we interfaced it with a Laptop using
the Focusrite Scarlett USB audio interface. We used Ableton Lite (provided with the
Scarlett Device) to obtain the recordings and save them. We saved the recordings as 16
bit WAV files sampled at FS = 44.1 kHz.
The Roland Portable recorder also saved the recordings as 16 bit WAV files at the same
sampling rate FS = 44.1 kHz to the on-board SD card, which we transferred to a Laptop
later.

3.3.3 Note Recordings

All the recordings are for a fixed tonic E4 (≈ 330 Hz). With the tonic fixed, we record the
12 carnatic notes Table 3.2 with different recording parameters Table 3.3. An immediate
question is whether the note positions are fixed for Carnatic Ragas once the tonic is fixed,
or whether there is variability in the note position for different Ragas. Koduri et al. [30]
discusses this in detail. There are variations in note intonations across Ragas. However,
for a fixed tonic, these variation are not so drastic so as to cause a Ri2 in one raga to
be labeled as Ga2 in another one.

Carnatic Note Sa Ri1 Ri2 Ga2 Ga3 Ma1
Notation Sa Ri1 Ri2 Ga2 Ga3 Ma1

Carnatic Note Ma2 Pa Dha1 Dha2 Ni2 Ni3
Notation Ma2 Pa Dha1 Dha2 Ni2 Ni3

Table 3.2: Carnatic Notes

Description Notation

Octave Lower, Middle, Upper L, M, U

Loudness Soft, Loud So, Lo

Style Smooth, Attack Sm, At

Table 3.3: Recording Parameters

1. Octave: We record 3 octaves, around the tonic, one below and one above the
tonic octave. The pitch range of the recorded notes is from 115 Hz to ≈ 1100 Hz.

3https://www.behringer.com/Categories/Behringer/Microphones/Condenser/ECM8000/p/P0118
4https://www.roland.com/global/products/r-09hr/
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3.3 Carnatic Violin Dataset

However, it was difficult for the violinist to play the higher frequency notes after
Pa in the upper octave (because of the ill defined fingering positions for the notes),
hence there are limited recordings of the upper octave notes. The notes have been
maintained at the constant pitch by the violinist except in two cases:

(a) When playing loudly (bowing near the bridge), the notes went off tune some-
times.

(b) When playing the upper octave, to sustain the notes, the violinist uninten-
tionally had to add some vibrato

The above are rare instances, and have been taked care off during the annotation
process by removing the affected pieces.

2. Loudness: To capture dynamics, we have captured two loudness styles, soft and
loud. The violinist has tried his best to ‘objectively’ maintain the loudness levels,
however during recording it so happens that sometimes he plays certain sections
louder than the neighbouring loudness. The violinist has tried to avoid these, but
in the event that they occur, they have been labelled as a single loudness only.

3. Style: There are two playing styles the violinist considers. A Smooth one without
any attack directly playing the note, and a style where he starts each note with
an explicit attack.

The above recordings have been segmented and annotated into individual instances,
each containing a single note being played in a single style. The labelling convention fol-
lowed is: (#ID)-(Note) (Octave) (Loudness) (Style). An example of one such instance
is 130-Dha1 M So At. The total duration of the note recordings is 1143 seconds across
363 instances.

3.3.4 Gamaka Recordings

Besides the above controlled recording of notes, we have also obtained the recordings of
4 ragas which contain Gamakas -

1. Mayamalavagowla (MMG)

2. Bhairavi (BHA)

3. Shankarabharanam (SHB)

4. Shanmukhapriya (SHP)

For each of the Ragas, the Arohanam (Ar), Avarohanam (Av) and a short snippet
(SS) of a song in that Raga have been recorded. The short snippets have been decided
by the violinist to ‘maximize’ the gamaka recordings. Each of the short snippet is
approximately 3.5 minutes in duration. The Snippets contain different Gamakas used
in Carnatic Music. They are not of uniform loudness (i.e. they have some variability).
Also, the playing style is not consistent (like the previous sustain note recordings). The
naming convention is similar to the previous one: (#ID)-(Raga) (Ar/Av/SS). The total
duration of the Raga recordings is 1075 seconds.

From these Raga Recordings, shorter snippets of a few seconds each which contain
either one or multiple Gamakas have been extracted. These snippets are useful to test
the networks abilities, which will be discussed in detail ahead. The total duration of
these short Gamaka snippets is 113 seconds.
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3.3 Carnatic Violin Dataset

Gamakas

Gordon Swift defines Gamakas [31] as “the subtle shadings of a tone, delicate nuances
and inflections around a note that please and inspire the listener”. Very loosely, they
can be defined as the ‘ornamentation’ or deflections of notes (either around a single note
or when transitioning across notes). Gamakas are characteristic in Carnatic Music, and
are difficult to describe directly because the large number of Gamaka variations possible.
Srikumar [32] describes Gamaka ontologies in terms of their pitch contours (shown in
Table 3.4). He has made a “raga-agnostic” description of gamaka contours, and we have
tried to find these contours in our own recordings.

Gamaka Pitch Contour Description

Kampitam Variations around a note (like frequency modulation)

Jaru Glides from one note to another (like glissandi)

Odukkal Sharp increase in pitch from a note

Nokku Sharp decrease in pitch from a note

Kandippu Descent across 3 notes with a stop at the second note

Table 3.4: Gamaka (with approximate contours and their descriptions)

Here is an example of pitch contours extracted from Raga short snippets with gamaka
segments overlayed on top. They have been extracted using the pYIN algorithm (as
implemented in Essentia [33]).
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Figure 3.5: Shankarabharanam
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Figure 3.6: Bhairavi
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Chapter 4

VaPar Synth

Having discussed parametric models for audio, generative audio synthesis and appropri-
ate datasets to test the system, we now proceed to introduce our parametric synthesizer,
the Variational Parametric Synthesizer or, VaPar Synth. The two main components
are the parametric model, and the generative model.

4.1 Parametric Model

h(t) + r(t) HpR

h(t
)

r(t)

Figure 4.1: Harmonic plus Residual model

Audio can be modelled parametrically in a manner that perceptually relevant pa-
rameters become available for musical control over the synthesized sound. A good
demonstration of this is the Harmonic plus Residual (HpR) model which we discussed
in Chapter 2. Summarized in Figure 4.1, the main idea is to decompose a signal into
a sum of sinusoids whose frequencies are integer multiples of a fundamental frequency,
and a residual. Consider the audio signal as s(t),

s(t) =
R∑
r=1

Ar(t) cos(θr(t)) + r(t) = h(t) + r(t),

where the first term h(t) is the harmonic component, and the second term r(t) is the
residual. The residual is in essence that part of the audio signal that cannot be rep-
resented by a sum of harmonic partials with R = number of partials used. Examples
in musical instruments involve the breathy sound when playing the flute and the the
scratchy sound the bow makes when it moves against the violin string during note sustain
regions.

The HpR model acts on a single spectral frame as input. The harmonic component
is represented by the harmonic magnitudes, and the residual component is represented
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4.1 Parametric Model

stochastically by the sub-sampled residual spectrum. Figure 4.2 summarizes the HpR
model for the harmonic component.

HpR

Magnitudes

f0

Figure 4.2: HpR model on a frame

We want to build on this by employing a source-filter inspired representation on top
of the HpR model. Consider for example the spectrum of a harmonic instrument. Does
one really need the information at all the frequencies to represent the audio? Not really.
Since the instrument is harmonic, you only need the values of the spectrum at multiples
of the fundamental frequency, or the harmonic partials. If we are further able to obtain
a relation between the amplitude and frequency (for example in a square wave, the
harmonics decay as 1

n). Thus, for representing the instrument spectrum, the two major
things we need are its fundamental frequency and this so called ’relation’ between the
amplitudes and harmonics. This has already commonly been done in speech processing
through what is called the source-filter model.

4.1.1 The Source-Filter Model

Caetano and Rodet [34] suggested applying another model on top of the Harmonic plus
Residual model, namely the source-filter (SF) model. This model is usually used for
speech analysis as it perfectly captures the speech generation process. In that model,
speech is considered to be produced only by two elements :

• Source: The device producing the excitation of the whole system, creating a signal
with an overall flat and large spectrum. For speech, the source would be the vocal
chords. In our model, the source represents the excitation signal, which is generally
produced by vibrating air columns (flute) or strings (guitar, violin).

• Filter: The element that will shape the signal produced by the source to only keep
certain resonances and modify the magnitude of the different spectral peaks. For
speech, the filter would be the magnitude responses corresponding to the vocal
tract, the mouth, the nasal cavity. In our model, the filter is generally the magni-
tude response imposed on the excitation signal by the instrument cavity/body.

An important assumption in the Source Filter representation is the independence be-
tween the source and filter. This assumption holds quite well for speech signals. The
same cannot be said for instruments. Their could be coupling/feedback between the
source and the filter which causes the filter to drive the source to oscillate at its reso-
nant frequency [35]. However, it can be extended to musical instruments as well under
certain assumptions, as discussed in [36]. This leads to a compact representation for the
harmonic and residual components of the audio,

• Harmonic:

– Source: Harmonic frequency components
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4.1 Parametric Model

– Filter: Harmonic spectral envelope for each frame

• Residual:

– Source: White noise

– Filter: Residual spectral envelope for each frame

One of the crucial tasks in the SF model is the estimation of the spectral envelopes.
We shall discuss the algorithm in detail.

True Amplitude Envelope (TAE) Algorithm

Roebel et al. [25] outline a procedure to extract the harmonic envelope using the True
Amplitude Envelope (TAE) algorithm. The original paper by Imai in [37] had been
published in Japanese only (and no online version available of the original paper), thus
we follow the procedure highlighted in [25, 36] to extract the TAE.

Before discussing the TAE, we introduce the idea behind the cepstrum and cep-
stral liftering. The real valued cepstrum is a homomorphic representation of the audio
spectrum [38] defined as,

Cp = real[IFFT[log[FFT(x̄)]]] (4.1)

where x̄ is the audio frame input. It is used to identify pitch periodicity in the audio
spectrum. The spectrum is taken into the cepstral domain and only a given number of
cepstral coefficients is kept (also known as liftering) as defined in Equation 4.2 with Fs
as the sampling rate and f0 as the pitch.

Kcc <
Fs
f0
. (4.2)

As explained in [34], the cepstral liftering should only keep the coefficients allowing
spectral variations corresponding to the envelope of the spectrum. With C

′
p as the

liftered cepstrum (keeping only the first Kcc cepstral coefficients and the rest to zero),
the spectral envelope is simply obtained as,

SE = FFT [C
′
p]. (4.3)
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Figure 4.3: Harmonic Spectral Envelopes
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4.1 Parametric Model

Figure 4.3 shows the liftered cepstral envelope. One issue with this method is that
the envelope obtained tends to follow the mean energy. However, we are interested in
the values of the spectrum at the harmonic peaks. The TAE algorithm addresses this
issue by iterative cepstral liftering.

Since the TAE works on top of the HpR model, the input to the TAE model is the
sub-sampled harmonic spectrum. The sub-sampling rate corresponds to the fundamental
frequency of the frame. The TAE algorithm is presented in algorithm 1.

Algorithm 1: TAE algorithm

input : X - Subsampled magnitude spectrum
output: Vf - TAE

1 Initialization;
2 A0 = log(X), V0 = −∞
3 while Ai(k)−A0(k) < ∆ ∀k ≤ N do
4 for k ≤ N do
5 Ai(k) = max(Ai−1(k), Vi−1(k));
6 end
7 Liftering the cepstrum;
8 Cp = real[IFFT(Ai)];
9 for k ≤ N do

10 if k ≤ Kcc then

11 C
′
p(k) = Cp(k);

12 end
13 else

14 C
′
p(k) = 0;

15 end

16 end

17 Vi = real[FFT(C
′
p)];

18 end
19 Vf ← Vi;

The algorithm principle is rather straightforward. Let Ai and Vi be respectively the
envelope and the liftered cepstrum represented in the spectral domain at iteration i, with
A0 being the log magnitude spectrum of the original sound and V0(k) = −∞, ∀k. Then,
at each iteration, Ai is taken to the cepstral domain, liftered, and then taken back to the
spectral domain. If the algorithm were to stop here after a single iteration, it would be a
simple cepstral liftering. However, the drawback of the cepstrum liftering is that energy
is lost when removing the higher components, which results in an envelope following
the mean energy instead of the peaks. This is taken care of by the TAE algorithm by
applying the following condition at each iteration:

Ai(k) = max(Ai−1(k), Vi−1(k)) (4.4)

The algorithm then stops when the original spectrum is nowhere larger than the envelope
by a threshold ∆. The iterative process pushes the envelope towards the peaks by
filling the valleys of the spectrum. Figure 4.3 shows the TAE overlaid on the harmonic
spectrum. On comparison with the liftered cepstrum in the same plot, the differences
can clearly be seen. The liftered cepstrum follows the mean energy, whereas the TAE
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4.1 Parametric Model

passes through the peaks of the magnitude spectrum. Figure 4.4 summarizes the TAE
algorithm as applied over the HpR algorithm.

f0
Magnitudes

TAE

CCs

f0

Figure 4.4: TAE over HpR

Figure 4.5 summarizes the parametric representation of violin audio that we employ.
It is a source-filter inspired representation that builds on top of the HpR model [36, 34].
All the blocks mentioned are performed on spectral frames extracted from the sustain
portions of single note recordings by applying energy thresholds.

HpR

TAE

TAE

x(t)

CCH f0

CCR

Sinusoidal
Reconstruction

IFFT

Add x′(t)

Harmonic

Residual

h(t)

r(t)

Figure 4.5: Parametric Model for a single frame, Overlap-Add to obtain waveform

1. We run the HpR model [5] on each spectral frame.

2. We sub-sample the obtained Harmonic and Residual Spectra. For the Harmonic,
we only keep the amplitude peaks corresponding to the harmonic locations (equiv-
alent to sampling the harmonic spectrum at its fundamental frequency). For the
residual, we simply downsample the original spectra to a chosen fixed frequency
interval. A residual sub-sampling rate of 100 Hz is mentioned for a sinusoidal
representation of speech in [39]. We use a higher sub-sampling rate of 430 Hz,
which is one of the values used by Serra in SMS-Tools [5, 4].

3. With the sub-sampled spectra, we use the TAE Algorithm to obtain a smooth
spectral envelope for each of the harmonic and residual components. The spec-
tral envelopes are represented by their cepstral coefficients. The harmonic is also
additionally characterized by the fundamental frequency of the frame f0.
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4.2 Generative Model

4. To reconstruct the harmonic portion, the sinusoid amplitudes are sampled from
the harmonic locations of the TAE, and a sinusoidal reconstruction is performed.
For the residual, we simply perform the inverse FFT of the residual spectrum with
random phases. The net reconstruction is the sum of the two.

4.2 Generative Model

Having discussed the parametric representation of audio we employ, we now move onto
the generative model - the Variational Autoencoder. We begin our discussion by in-
troducing and providing a theoretical framework for autoencoders and their variational
counterpart. We then discuss our network architectures, and how we obtain the optimal
values of hyperparameters for the networks.

4.2.1 Autoencoders

Having briefly introduced autoencoders (AE), we now explore them in more detail. A
rather extensive comparison of several AE network structures can be found in [23]. The
general structure of such a network is represented Figure 4.6.
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Figure 4.6: General architecture of an autoencoder

The network’s output and input should be the same. The network thus minimizes
the Mean Squared Error (MSE) between the input and the network’s reconstruction (or
its output) given by,

L = |X − X̂|2 (4.5)

with X as the input and X̂ is the network’s reconstruction of the input. Because of
its bottlenecked shape, the AE is forced to learn a compact(lower dimensional) repre-
sentation of the data. This lower dimensional representation is also called the ‘latent
space’. What we would ideally like is for the AE to learn a latent space over which we
can exercise some kind of control (useful for controlled synthesis of audio). However, the
function being optimized in Equation 4.5 does not enforce any additional constraints.
Very often, the latent space is sparse and only consists of certain regions where the data
likely resides.
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4.2 Generative Model

4.2.2 Variational Autoencoders

The Variational Autoencoder (VAE) is loosely based on an AE. However, the working
principle and optimization criteria are different. VAEs are inspired from Variational
Inference [40], which has its roots in Probabilistic Graphical Models. Figure 4.7 shows
a graphical model highlighting the dependence of the data X on an underlying latent
variable z.

Xz

Figure 4.7: Graphical Model showing dependence of X on z

From Figure 4.7, we can write the following,

P (X, z) = P (X|z)P (z),

However, we are interested in how the latent variable z depends on X. For this, we have
to compute the posterior distribution,

P (z|X) =
P (X|z)P (z)

P (X)
,

and to obtain P (X), the following integral has to be computed:

P (X) =

∫
z
P (X|z)P (z)dz,

which becomes intractable for high dimensional z. Variational inference approximates
P (z|X) with another distribution Q(z|X). To ensure that the approximation is good
enough, you minimize the KL-Divergence between the two distributions,

KL[Q(z|X, θ)||P(z|X, θ)] = Ez∼Q{log Q(z|X, θ)− log P(z|X, θ)}, (4.6)

where θ indicates that the distribution is parameterized by θ and E is the expectation
operator under Q. We drop the θ afterwards to lighten the expressions. Because a
sufficiently general function can map a Gaussian distribution to any desired distribution
[7], the prior on the latent variable z is chosen to be Normally distributed. Equation 4.6
can be rewritten using Bayes rule, and the terms can be rearranged to obtain:

logP (X)−KL[Q(z|X)||P(z|X)] = Ez∼Q{log P(X|z)} −KL[Q(z|X)||P(z)]. (4.7)

We want to maximize the left side of that equation as we want to maximize logP (X). If
Q(z|X) is a good approximation of P (z|X), the KL-divergence will be 0 and we will then
actually maximize the log-likelihood. To make all terms of the equation above tractable,
Q(z|X) is usually chosen to be a Gaussian distribution whose parameters are learned
from X by the encoder. The right-hand side can then be maximized using stochastic
gradient descent. Figure 4.8 summarizes the VAE architecture. As described above, the
encoder represents P (z|X), and learns the Gaussian distribution parameters µ(X) and
Σ(X) from the data itself. A point ε is sampled from N (0, I), and transformed by the
parameters in the following way,

z ← Σ(X)ε+ µ(X). (4.8)
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4.2 Generative Model

This is then passed through the decoder, which represents Q(X|z) to give the recon-
struction X ′. Sometimes, instead of using the optimization objective as mentioned in
Equation 4.7, it is useful to weigh the terms relative to each other by multiplying the
KL Divergence term with a weighting factor,

logP (X)−KL[Q(z|X)||P (z|X)] = Ez∼Q{logP (X|z)} − βKL[Q(z|X)||P (z)]. (4.9)

This leads to what is called a β VAE [41]. If β = 1, it reduces to a normal VAE.
Extremely small β gives more importance to the MSE term, thus prioritizing perfect
reconstruction (making the VAE behave more like an AE). Similarly, high β strongly en-
forces the prior to be Gaussian. A more complete and mathematically rigorous analysis
of VAEs can be found in [7, 40].

X Encoder
P

μ(X)

Σ(X)
ε

N(0,I)

xx

+
Encoder

P
Decoder

Q X'

Figure 4.8: Architecture of a VAE

4.2.3 Conditional VAE

Getting new signals similar to the training data requires sampling from the trained VAE.
The procedure is actually rather straightforward because of the Gaussianity imposed to
the latent space. Indeed, creating new outputs simply requires sampling from N (0, I)
and passing those samples through the decoder.

However, VAEs do not allow much control over the sampling procedure. Unless
we have access to a representation of the latent space, we are always going to use a
random z that will produce an output ‘similar’ to the training data. Say for example,
our input data is multimodal, and we want to generate samples corresponding to a
particular mode. This will not be possible until we know what part of the latent space
generates which mode (ideally though, the VAE as presented should not be used for
multimodal data, as the Gaussian prior is unimodal in itself!). To address that issue,
we will use a slightly modified version of the VAE called a Conditional VAE (CVAE). It
works by conditioning the generative process on an external variable [42, 7]. Thus, the
only difference in the equations is that the distributions involved in the optimization are
replaced by the conditional distributions.

4.2.4 Hyper-parameter Tuning

The main hyperparameters in our networks are the dimensionality of the latent space
and the value of β. To decide these, we train the network on the Good-Sounds dataset.
We split the dataset into an 80-20 split and label the 80 as train and 20 as test (the two
are exclusive). We train the networks on train data instances with different hyperpa-
rameters, and evaluate the networks MSE with the test instances. The MSE reported
here is the average reconstruction error across all the test instances.

We first find the optimal value for β. We vary β to be 0.01,0.1 and 1. Figure 4.9
shows the MSE for the various β values for a CVAE. We observe that β = 1, the MSE is
high (relative to the others). From Equation 4.9, we see that high β forces gaussianity
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Figure 4.9: CVAE, varying β
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Figure 4.10: CVAE (β = 0.1) vs AE

at the expense of MSE, and low β forces the network to behave like an autoencoder. To
choose between the other two values, we observed that for β = 0.01, the network starts
behaving like an autoencoder (by giving lesser weight to the latent space regularization).
Thus, from these plots, we choose to work with β = 0.1 for all our experiments. After
fixing β to 0.1, the next decision is the latent space dimensionality. To decide this, we
experiment 4 different values - 2,8,32,64 for the AE, and CVAE. Figure 4.10 shows the
MSE plots for this. As one would expect, increasing the dimension of the latent space
shows a decreasing trend in the MSE. Also, the MSE for the AE is lower than CVAE.
This is also expected as the AE is trained to minimize the MSE unlike the CVAE, which
also has a regularization term which enforces gaussianity on the latent space. The MSE
decreases steeply till the dimension is 32, and then the decrease is less gradual from 32
to 64. Thus, we choose to work with a latent space of dimension 32.

All networks are implemented in PyTorch [43]. The encoders and decoders are
neural networks with linear fully connected layers and use leaky ReLu activations to
allow for stable training. The optimization was performed using ADAM [44] with an
initial learning rate of 10−3, and training was run for 2000 epochs with a batch size of
512 on an NVIDIA GeForce GTX 1070 Mobile GPU.

Having provided the details on the parametric model we choose and the generative
model along with it, we move on to discuss the various experiments we perform.
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Chapter 5

Experiments and Results

Having discussed our choice of parametric representation and the Generative Models we
employ, we now ask the question - How applicable are our choices for the synthesis of
Violin Audio? Through the experiments we will be performing, we aim to tackle the
following questions,

1. How applicable is our parametric representation to model violin audio

2. Why do we use a Conditional VAE over other similar architectures like the VAE
or AE

3. Incorporating the Residual modeling coherently with the Harmonic Modeling

5.1 Source-Filter Model for Violin Audio

Beauchamp [45] discusses the applicability of the Source-Filter (SF) model to violin au-
dio. Unlike speech, the SF model has not been used widely to model musical instruments
because of the possible coupling between the source and filter in instruments [35]. For
the violin however, string vibrations are (largely) independent of the body resonances,
thus the independence assumption in the SF model is considered to hold [45, 46].

To check the applicability of the SF model for the harmonic component of violin
audio, we plot the filter (the spectral envelopes) for different fundamental frequencies
(sources). If the Filter is indeed independent of the Source, then we should not be seeing
any considerable change in the spectral envelope shape for different pitches. Figure 5.1
shows spectral envelopes for different MIDI notes from the Good-Sounds dataset. The
plot indicates clear differences in the spectral envelope shape across the range of pitches
shown. A cursory glance at the plots suggest that the SF model should not hold for
violin audio. However, Beauchamp [45] has made an interesting obervation about the
violin filter. What makes the filter challenging to model is the observation that violin
resonances are found to be much sharper (narrower) than those of voice.

In our process of estimation of the spectral envelope, we sub-sample the spectrum
at the fundamental frequency and its multiples. For lower fundamental frequencies, we
acquire more samples than for higher fundamental frequencies. This might lead to the
indirect dependence of the filter on the source fundamental frequency f0 because of the
f0 dependent sampling of the filter spectral envelope.

The consequence of narrow filter resonances in the violin is that even for a slight
change in f0, the relative amplitudes of the adjacent harmonics can change quite drasti-
cally, which might affect the sound timbre drastically. This has been noted by Beauchamp
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Figure 5.1: Harmonic Spectral Envelopes

in [45] and Fletcher in [47]. The envelopes we plot in Figure 5.1 shows exactly this vari-
ation across MIDI pitches.

The above results were on violin sounds from the Good-Sounds dataset. We also
extract and plot the spectral envelope from our Carnatic Violin Dataset, as shown in
Figure 5.2.
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Figure 5.2: Harmonic Spectral Envelope from Carnatic Violin Dataset

From the plots, we come to the same conclusion that there is considerable variation
in the envelopes across pitch. However, all the plots we show above only depict the
harmonic spectral envelope, and not the residual spectral envelope. For a more com-
plete picture we should also consider the parametric model for the residual component.
Fletcher et al. [48, 47] performed a very interesting series of experiments on the per-
ceptually important aspects of violin synthesis. The first study [48] discusses the salient
aspects that could differentiate a ‘real’ violin tone from a ‘synthesized’ one. One of those
that is of interest to us, and which we will explore further is the residual noise inherent
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Figure 5.3: Residual Spectral Envelope from Carnatic Violin Dataset

in tone production (the noise produced when drawing the bow across the string). For
the lower frequency notes, the fundamental and harmonics mask the noise. However,
for the higher frequency notes, they are not able to mask the noise, hence the noise
becomes audible. While this ‘noise’ helps in discriminating synthetic notes from real
ones, the studies claim that it is usually inaudible for notes of lower frequencies, but
becomes audible at notes of higher frequencies.

Similar to the harmonic component, the Residual Component could also depend on
the pitch. Fletcher et al. in their work synthesize this noise by drawing the bow across
the bridge without exciting the strings, thus effectively making it independent of the
harmonic component. To test the dependence of the residual spectral envelope on pitch,
we do the same thing as we did for the harmonic, we plot the residual spectral envelope
for different pitches. For the audio, we use our Carnatic Violin Dataset.

Figure 5.3 shows that the Residual Spectral envelope does not significantly change for
different pitches, thus hinting that the residual spectral envelope is indeed not dependent
on the pitch (as the parametric model suggests). This can be explained by the fact that
we have sufficiently sub-sampled the actual residual spectrum to capture variations in
the residual envelope. We have also sub-sampled at the same frequency for all pitches
(making the sampling independent of f0 in effect).

If the harmonic Filter was independent of the source, then we should at least in
principle be able to model the violin by only modeling the spectral envelope for a single
f0. However, the discussion above tells us otherwise - There is variation in the harmonic
spectral envelopes across pitch. This is where we invoke the next card in our hand -
Generative Models!

5.2 Pitch Conditioned Generative Models

In Chapter 4, we discuss the Generative Model we employ, namely the Variational Au-
toencoder. The main reason in using a VAE over an AE is because it allows us to obtain
a continuous latent space from which we can sample points (and synthesize the corre-
sponding audio). The previous section tells us that the TAE estimate of the harmonic
spectral envelope depends on the pitch. By conditioning on the pitch, we expect the net-
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5.2 Pitch Conditioned Generative Models

work to capture the subtle dependencies between the envelope and pitch, thus allowing
us to generate the envelope more accurately, and at the same time giving us the ability
to control the pitch. Figure 5.4 shows the networks we employ for this experiment. The
H and R subscripts denote the harmonic and residual modeling networks respectively.
Since the harmonic envelopes depend on pitch, we condition the harmonic cepstral coeffi-
cients on the pitch. For the residual, we do not do this conditioning because the residual
envelopes are largely independent of the pitch, as seen from the previous section. Thus,
we independently model the harmonic and residual components with separate networks.
One question (a very relevant one) that might pop up in your mind is why do we model
them independently? This is something we tackle later. Currently, we just model both
of them independently.

CVAEHCCH CCH
'

VAERCCR CCR
'

f0

Figure 5.4: Independent Modeling (INet)

To additionally convince ourselves of the need for conditioning for the harmonic
spectral envelope, we visualize the latent spaces of our harmonic VAE with and without
pitch conditioning. A quick reminder about the latent space, it is the lower dimen-
sional representation of the input data. However, the latent spaces we use are very
high dimensional. We use violin clips from our Carnatic Violin Dataset here. From
Chapter 4, we found the optimal latent space dimension to be 32, which is indeed quite
high dimensional to visualize. To visualize the latent space, we have to use some kind
of dimensionality reduction technique. The simplest is obviously Principal Component
Analysis (PCA). However, we have no guarantee that our space is linear, and thus PCA
would not be very helpful in visualizing structure. This non-linearity of our latent space
motivates the use of a dimensionality reduction technique that preserves local structure
in high dimensional space while projecting down to a lower dimensional space. t-SNE
[49] is the technique we employ - it effectively projects high dimensional data onto lower
dimensions (2 in our case) using matching between distributions, and helps in visualizing
structure in the data through clustering.

Figure 5.5 shows the latent space visualization without any pitch conditioning. If
the harmonic spectral envelope was independent of pitch, then we should ideally not be
seeing any clustering in the latent space. However, we can see considerable clustering
when we do not condition on the pitch. Another interesting thing to observe in the
clustering is its structure. For notes close by in pitch, the clusters are close, and the
clusters move away (from right to left) as you progress from the Sa to Ni3. The black
arrow overlaid on top shows the progression of note clusters from Sa to Ni3. In essence,
this plot tells us that the latent space still contains information on the pitch, thus
providing additional motivation to condition the envelope on the pitch.

We repeat the above procedure, except this time we condition the harmonic spec-
tral envelope on the pitch. Figure 5.6 shows the latent space visualization with pitch
conditioning. We can see in the latent space that all the notes are clustered around
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Figure 5.5: Harmonic VAE Latent Space without Pitch conditioning

together. What the pitch conditioning does is take care of the dependencies by learning
a conditional distribution for the harmonic spectral envelope. It factors out the pitch
dependence onto the external variable. Thus, with the pitch as a conditional, the de-
coder can correctly sample the latent space to obtain the optimal harmonic envelope for
that pitch.
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Figure 5.6: Harmonic VAE Latent Space with Pitch conditioning

Having analyzed the need for conditioning for the harmonic spectral envelope, we
proceed to do the same for the residual spectral envelope. From the previous section,
we saw that the residual spectral envelopes do not vary considerably for different pitch.
We visualize their latent space, without and with conditioning in Figure 5.7. We can
see that there is no clustering observed, either without or with pitch conditioning, thus
suggesting that the residual spectral envelopes are indeed independent of the pitch.

Summarizing what we have demonstrated so far,

1. The harmonic spectral envelope depends on the pitch. Using a Conditional VAE
can potentially help in modeling these inter-dependencies

2. The residual spectral envelope does not depend on the pitch. Thus, no conditioning
is needed for them

We have not established a procedure that can confirm conditioning does indeed improve
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Figure 5.7: Residual VAE Latent Spaces without and with f0 conditioning

the harmonic spectral envelope estimation. We perform ‘Reconstruction’ experiments,
detailed ahead.

5.2.1 Reconstruction

As the name ‘Reconstruction’ suggests, we omit all instances of certain selected pitches
during training, and see how well our model can reconstruct a note of the unseen target
pitch. The spectral envelope of a note instance of the target pitch is input to the network.
The output of the network is the reconstructed envelope, to be evaluated with respect
to the input. These reconstruction experiments give us an idea of how well the networks
can generalize to unseen cases.

We first present experiments on the Good-Sounds dataset. However, these only
consider the harmonic component, and not the residual.

Good-Sounds Analysis

We consider two distinct training contexts for the reconstruction of a note with unseen
pitch. (a) all instances of the neighboring MIDI notes upto 3 neighbors are included in
the training set, as shown in Table 5.1; this is performed for T = [63, 64, 65, 66, 67, 68].
(b) the training set contains instances of only the octave endpoint MIDI notes, 60 and
71; we reconstruct instances of all the intermediate notes.

MIDI T - 3 T - 2 T - 1 T T + 1 T + 2 T + 3
Kept X X X × X X X

Table 5.1: X indicate MIDI note instances included in the training set for the synthesis
of a given target note of MIDI label T.

In each of the above cases, we compute the MSE as the frame-wise spectral enve-
lope match across all frames of all the target instances. The results are presented in
Figure 5.8.

The first experiment asks the question if our network can synthesize the missing
MIDI pitch when trained on the neighboring pitches on either side which provide some
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5.2 Pitch Conditioned Generative Models

context. The left plot in Figure 5.8 shows the MSE when each note is left out for
T = [63, 64, 65, 66, 67, 68]. This plot tells us that there is no clear winner between the
CVAE and AE. The next experiment skips all the pitches in an octave, sans the octave
endpoints. We can see that the CVAE produces better reconstruction, especially when
the target pitch is far from the pitches available in the training data. In the latter case,
the MSE is seen to decrease as the target pitch moves closer to its nearer octave end
pitch in both networks, as one might expect. Overall, the conditioning provided by the
CVAE helps to capture the pitch dependency of the harmonic spectral envelope more
accurately.
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Figure 5.8: Harmonic spectral envelope MSE across unseen pitch note instances with
close MIDI neighbors in training data (left), and only octave end notes in training data
(right).

The above comparison between the AE and CVAE is not technically fair, as the
CVAE has additional pitch information to work with. To emulate the effect of pitch
conditioning with an Autoencoder (AE), we train the AE by appending the pitch to
the input CCs and reconstructing this appended input as shown in Figure 5.9. We were
motivated to do this from Wyse [14] who followed a similar approach of appending the
conditional variables to the input of his model. We expect that the network can utilize
the pitch information and learn the dependencies between the harmonic CCs and the
pitch. This way, the AE is comparable to our proposed CVAE in that the network might
potentially learn something from the f0 during reconstruction. For reconstruction, we
do not work with the reconstructed f0

′
, rather we use the original f0 given as an input.

f0

CCs
Autoencoder

f0
′

CCs
′

Figure 5.9: ‘Conditional’ AE (CAE)

We then perform the experiment of training this CAE only on the endpoints. The
right plot in Figure 5.8 shows the MSE plot obtained for the CAE. As can be seen,
appending f0 does not seem to be improving the model, on the contrary, it seems to
worsen the AEs performance in reconstructing the skipped notes. This is expected
because the AE loss function does not force the network to learn the joint dependencies,
it simply forces it to reconstruct the input as well as it can. Thus, using a CVAE is more
beneficial than simply appending the pitch to the input and expecting the network to
do the rest.
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Figure 5.10: Flowchart of the state of the art frame-wise audio synthesis pipeline (upper
branch) and our proposed model (lower branch). Z represents the latent space learned
by the (CV)AE.

The lower branch in Figure 5.10 summarizes our proposed model. To highlight the
contrast between our proposed Parametric Model and the Spectral models currently
in use in literature, we als carry out reconstruction experiments with the frame-wise
magnitude spectra as detailed by Roche et al. [23], which directly autoencode the
magnitude spectra The network has been trained on MIDI 61,62,64,65. Then, we both
skip and include MIDI 63. The network will be able to reconstruct MIDI 63 when
trained on it. Will it be able to do so if we skip MIDI 63? That is what we demonstrate.
Figure 5.11 shows the input MIDI 63 spectrogram to the model.

Figure 5.11: Input Magnitude (dB) Spectrogram

As expected from an AE, it can reconstruct MIDI 63 when it has been trained on
it. Figure 5.13 shows the reconstructed spectrogram.
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5.2 Pitch Conditioned Generative Models

Figure 5.12: Reconstructed magnitude
spectrogram with MIDI 63 skipped

Figure 5.13: Reconstructed magnitude
spectrogram with MIDI 63 included

However, the AE fails to reconstruct the note it has not been trained on, inspite of
having been trained on nearby notes. Figure 5.12 shows the reconstructed spectrogram.
It is quite distorted and lacks even a clear harmonic structure. Because of the audio
representation used (a magnitude spectrogram), the generalization capability of an AE
is limited. If the magnitude spectrogram of nearby notes were similar, then the AE
should in principle be able to reconstruct the skipped notes. However, the spectrogram
contains joint information from both the source (pitch) and filter (spectral envelope).
If the AE is instead trained on the filter, we know that the filter does not drastically
change across notes. Further, if we use a CVAE instead of an AE (as demonstrated
above), the network also captures the source-filter interdependencies.
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Figure 5.14: CVAE MSE with and without Pitch Conditioning
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5.3 Interdependence of Harmonic, Residual

Carnatic Violin Analysis

We also perform a few experiments on the Carnatic Violin dataset we have recorded
This is to ensure consistency of results across datasets. It also functions as a sanity
check for the assumptions we make.

Similar to one of the experiments demonstrated, we train networks on the pitch
endpoints in the middle octave (as shown in Table 3.3). The endpoints in this case
correspond to the notes Sa and Ni3. Similar to the previous experiment, we compute
the MSE in the frame-wise harmonic spectral envelope match across all frames of all
the target instances. The only difference is that here, both the networks are Variational
Autoencoders, and we compute the MSE with and without pitch conditioning. We see
a similar trend in Figure 5.14 and Figure 5.8 in that pitch conditioned networks have
a lower MSE overall as compared to without pitch conditioning. This reaffirms our
belief in the necessity to pitch condition the networks modeling the harmonic spectral
envelope.

5.3 Interdependence of Harmonic, Residual

In the previous section, we only discuss the importance of conditioning for the harmonic
CVAE. We did begin the discussion noting that the residual spectral envelope does
not vary considerably with pitch, hence there is no need to condition. However, we
did not consider the possibility of interdependencies between the harmonic and residual
component, and we modelled both of them independently of each other. In this section,
we now provide motivation as to why the harmonic and residual might depend on each
other, and we present motivation for the same. After this, we also propose network
architectures that could potentially take care of these interdependencies.

Before the discussion on interdependence, why is the residual so important? Fletcher
et al. [48, 47] formally define the residual as the noise produced when drawing the bow
across the string. They perform a series of experiments to compare the noise levels with
harmonic partial levels for a violin. Figure 5.15 shows the plot they obtain.

Figure 5.15: Noise Levels vs Frequency (figure taken from [48])

In Figure 5.15, ◦ represents the partials for G (392 Hz), × for G1 partials (784 Hz)
and � for G2 partials (1568 Hz). The G’ (196 Hz) partials have not been shown in the
plot. For the lower frequency notes, the fundamental and harmonics mask the noise.
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5.3 Interdependence of Harmonic, Residual

However, for the higher frequency notes, it is not able to mask the noise, hence the noise
becomes audible. As said in the paper [48] (verbatim in the authors own words),

“An examination of Figure 5.15 shows why for the tones G’ and G the noise is
inaudible. The fundamental and the harmonics mask the noise. For both G’ and
G, the noise that is lower in frequency than that for the fundamental is masked
by the fundamental. However, this is not true for G1 and G2. For example, for
G2, the fundamental frequency is 1568 cps. When the sound-pressure level of this
fundamental at the ear is about 80 dB, then it will not mask pure tones that have
frequencies below 1000 cps and levels higher than 50 dB.
The noise in a critical band acts like a pure tone. So it is seen why the noise for
G2. is audible. The same is true for G1. The tone G is on the border line so the
noise is neither definitely audible or definitely inaudible.”

Thus, the residual noise is more prominent for the higher frequency notes than it is
for the lower frequency ones.

Fletcher et al. in [47] extends the above analysis, from sustained single notes to
vibrato notes. A few observations brought out are:

1. During vibrato, the relative amplitudes of the partials are not fixed over time
i.e. there is a phase offset amongst the amplitudes of various partials. Thus, the
harmonic structure varies across time.

2. The superimposed noise is usually inaudible for notes of lower frequencies, but
becomes audible at notes of higher frequencies.

As we mentioned previously, to synthesize the residual, the authors draw the bow
across the bridge without setting the strings into motion (i.e. no harmonics!). Thus,
in effect, they synthesize the same residual for all of the pitches, further justifying that
we do not have to condition the residual generation network on the pitch. What then
justifies the interdependence of the harmonic and residual component? Mathews et al.
[46] in their studies propose a theory of ‘Resonant Enhancement’ of tones which states
that the rich timbre of the violin is essentially due to the string vibrations being filtered
at the resonant locations of the violin body. This effectively tells us that if the string
vibrations are filtered, then the noise produced by the bowing should also be filtered by
the same resonances. Thus, both the harmonic and residual components are processed
by the same violin body resonances and cannot be assumed to be independent.

When we bow the string harder to produce a louder tone, the residual component
will also be loud, and they both will be filtered by the violin body simultaneously, thus
indicating that the harmonic and residual fundamentally depend on the playing style of
the note. To check our hypothesis, we show the harmonic and residual spectral envelope
variations in Figure 5.16 for the same note by varying the loudness from soft to loud.

The vertical blue lines in the harmonic spectral envelope in Figure 5.16 represent the
absolute magnitude differences for the harmonics. If loudness variation were a simple
amplitude scaling, then both the harmonic and spectral envelopes should be shifted
up (log-plots) and the blue lines should all be the same length. However, as we see,
a loudness increase is not just a scaling. It causes certain frequencies to be boosted,
others to be suppressed, and also changes the tilt in the spectral envelope.

To contrast the harmonic with the residual, we also plot the residual spectral en-
velopes in Figure 5.17. Even the residual envelope is not a simple shifting as one would
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Figure 5.16: Harmonic Spectral Envelope for Different Loudness

expect if it were simply scaled. This further strengthens our hypothesis that the har-
monic and residual envelopes must be dependent as they have a common underlying
origin in the played loudness style of the note.
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Figure 5.17: Residual Spectral Envelope for Different Loudness

There could be many different ways to try joint modeling in a neural network. The
simplest procedure however is to simply concatenate the inputs and feed them to a
CVAE to model them together, as shown in Figure 5.18. Since the encoder and decoder
are given as input both the harmonic and residual CCs, the reconstruction inherently
takes into account both the harmonic and residual components. The second approach
of modeling the sum and difference of CCs is more non-trivial. The intuition behind
it comes from current methods that generatively model the magnitude spectrum of the
sound [22, 23]. The magnitude spectra is the sum of the harmonic and residual spectra.
Thus, by directly modeling the spectrum, the autoencoder takes care of both of them
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Figure 5.18: Concatenative Modeling (ConcatNet)
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Figure 5.20: Independent Modeling (INet)

together. If we could somehow model the difference of the harmonic and residual spectra
as well, we could individually obtain the harmonic and residual components. That is
exactly what we try to do via our network, as shown Figure 5.19. We have 2 networks, the
sum and difference networks. The sum network, in the process of autoencoding the sum
of the harmonics and residual inherently learns their joint dependencies. The difference
network is a ‘trick’ to extract the individual harmonic and residual components from
the sum network. We can obtain the harmonic and residual vectors by simply adding
and subtracting the outputs of the sum and difference networks. One might ask why
do we need the individual components? Keeping in mind the end-goal of being able to
synthesize audio, it would be good to have the harmonic and residual components if one
is additionally interested in ‘modifying’ the audio (time stretching, frequency scaling,
morphing etc.). As a baseline for comparison, we also model the harmonic and residual
independently as shown in Figure 5.20. The dotted line in the networks represents the
pitch being used as a conditional variable to the networks. H,R represent the framewise
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5.4 Generation/Synthesis

harmonic and residual cepstral cepstral coefficients to the network, and ∼H and ∼R
represent the network reconstructions of the same. We use our Carnatic Violin Dataset
for this experiment.

How to decide which network works better? We plot the reconstruction MSE, which
is computed as the average over all test instance frames given as input to the network
(test here refers to the fact that the network has not seen these during training). We
work with the sustain portion of the notes in our dataset, and split it to train and test
data evenly. To allow the network to learn the potential dependencies of the harmonic
and residual components, we train with frames of both loudness’s - soft and loud. Also,
we choose notes in the higher octave because Fletcher et al. [48, 47] mentions explicitly
that the residual plays a more important role perceptually in the higher octaves. Thus,
with this joint modeling, we hope to see the residual being reconstructed at a lower
MSE.
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Figure 5.21: Reconstruction MSE

Figure 5.21 shows the note-wise reconstruction MSE. For the Harmonic MSE, the
Independent Modeling proves to be most superior. Interestingly, for the Residual MSE,
the joint modeling methods result in a lower MSE though, thus strengthening our belief
in joint modeling of the harmonic and residual components.

5.4 Generation/Synthesis

The previous experiments evaluated the networks reconstruction capabilities. However,
we are also interested in using it as a synthesizer which is capable of generating instru-
ment audio. Thus, in this experiment, we see how well the network can generate the
spectral envelope of an instance of a desired pitch (not available in the training data
of the network). We use the Good-Sounds dataset for the current experiment, with a
similar experiment being performed for our Carnatic Violin dataset as well.

We train the network on instances across the entire octave sans MIDI 65, and then
generate MIDI 65. Generation comes naturally to the CVAE, as we just have to sample
latent points from the prior distribution, and pass them through the decoder along with
the conditional parameter f0 to generate the spectral envelope, as shown in Figure 5.22.
An immediate question that might arise is how to sample multiple frames, since a single
latent variable only represents a single frame. Thus, we have to coherently sample
multiple latent variables and decode them to obtain multiple contiguous frames.
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Figure 5.22: Sampling from a CVAE

One naive strategy is to sample a single point again and again. The problem with
this approach is that the reconstructed note sounds ‘synthetic’ because of lack of any
variation. A simplistic approach to introduce these variations could be to introduce a
small jitter in the pitch track. This jittered pitch track would further cause variability
in the generated spectral envelopes. This approach does not work however, and the
synthesized note still sounds fairly synthetic. Another approach is to sample points
from the latent space in a small neighborhood. Motivated from [26], we perform a
random walk with a small step size near the origin in the latent space to sample points
coherently. We synthesize the audio by sampling the envelope at the harmonics of the
specified f0, and perform a sinusoidal reconstruction. Further, we try to generate a
practically useful output, viz. a vibrato violin note with typical vibrato parameters.
This exercise involves reconstructing spectral envelopes corresponding to the continuum
in the neighborhood of the note MIDI pitch.

To synthesize the residual bow sound, we train a network on the residuals, and repeat
the above sampling procedure. An interesting thing to note is that the ‘synthesized’
residual does not sound anything like a violin bow. It sounds closer to noise in-fact. How
are the networks we proposed in the previous section able to reconstruct the residual
then? The reason for this lies in the sampling procedure. Because we have trained our
networks on single frames, the latent space does not represent any temporal information.
We introduce temporality in our synthesized audio via sampling the latent space in
a particular way (the random walk being one such way). However, this might not
correspond to the ‘actual’ temporal order of the audio. Because of this, the generated
residual might be sounding simply like noise because if you want to make it sound like
an actual violin bow, there exists a certain trajectory along which you should sample
points from the latent space. We will discuss this point again in more detail in the next
chapter when we discuss listening tests conducted on our network audio.
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Chapter 6

Continuous Pitch Contour
Analysis

In our work so far, we have only discussed the reconstruction and synthesis of audio
notes with fixed pitches. However, Carnatic Music is much more than a sequence of
these fixed pitch notes being played one after another. As seen in Figure 3.5 and
Figure 3.6, Carnatic Music contains highly variable pitch contours. The ornamentations
in these pitch contours are also known as ‘Gamakas’. An immediate thing to note is
that the task of reconstructing these pitch contours is not as trivial as the previous fixed
pitch notes. This is because the network is only trained on certain fixed notes. From
these fixed notes, the network has to interpolate in between notes to generate the audio
at the pitch values not corresponding to the fixed notes.
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Figure 6.1: Pitch Contour and Discrete Notes

Figure 6.1 shows an example pitch contour with the fixed note training data overlaid
on top of it. As you can clearly see from the plot, most of the pitch contour does not
lie on the training data, and it is up-to the network to correctly determine what the
optimal interpolation is. From the experiments in Chapter 5, we see that conditioning
the harmonic network on the pitch enables the network to obtain a more accurate
reconstruction. We now proceed to train the network on the same discrete notes, and
see how well it can reconstruct the continuously varying pitch contour. Before we do so
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6.1 Pitch Extraction for Carnatic Music

however, we point out some of the challenges involved in obtaining the pitch contour for
Carnatic Music.

6.1 Pitch Extraction for Carnatic Music

The HpR Model by Serra [4, 5] uses the Two way Mismatch (TwM) [50] algorithm for
estimating the fundamental frequency of a frame. However, this procedure does not give
us a very good estimate of the pitch contour from violin recordings.
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Figure 6.2: Pitch Contour extracted with the TwM algorithm

Figure 6.2 shows a pitch contour extracted using the TwM algorithm. As we clearly
see, there are estimation errors whenever the pitch is transitioning. Thus, if we use
TwM to estimate the pitch, we might end up with a poor representation of the pitch,
which in turn will not allow us to represent the audio in its parametric representation.
There is the need for a better pitch estimation algorithm. pYIN is one solution we have
found to this issue. pYIN or Probabilistic YIN [51] builds on top of the original YIN [52]
pitch estimation algorithm. The YIN algorithm works by trying to estimate the pitch
from the time domain waveform, along with a few post processing steps to optimize the
estimation. pYIN build on top of this by using probabilistic thresholds and a Hidden
Markov Model to allow for smooth pitch transitions across frames. Refer to this online
demo1 by the author as part of a course project that explains and compares YIN and
pYIN in more detail specifically for Indian Classical Music.

Figure 6.3 compares the pYIN extracted pitch contour with the TwM extracted one.
The pYIN is clearly a much better extractor, as it is not as noisy as the TwM estimate.
The pitch contours in Figure 3.5 and Figure 3.6 have also been extracted using the pYIN
algorithm.

We thus modify the HpR algorithm to work with the pYIN pitch instead of the TwM
pitch. Here is where we face another technical snag. The pYIN pitch contour obtained
is still not very good. This was observed when listening to the parametric reconstruction
of the audio, which was quite bad. When we plot the pYIN pitch against the first partial
(twice the fundamental, thus by dividing it by 2, we obtain an estimate for the pitch)
obtained using the HpR algorithm, we observe something interesting.

1https://www.ee.iitb.ac.in/student/~krishnasubramani/data/pyin_demo
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6.1 Pitch Extraction for Carnatic Music
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Figure 6.3: Comparison of pYIN and TwM

Figure 6.4 shows the comparison of the two pitch contours. The pYIN estimate is
quite bad compared to the estimate from the first partial, which is a lot smoother. This
is because, the higher harmonics are estimated more accurately using the approximate
information obtained from the pYIN estimate.
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Figure 6.4: Comparison of pYIN and P1

Mathematically, if P1 represents the first partial, the fundamental frequency estimate
is simply,

f0 =
P1

2
. (6.1)

One important thing to mention here is the difficulty in the extraction of the residual,
especially with the varying pitch contour. Although the pitch estimate is improved,
it is not a perfect estimate. This causes the residual (obtained by subtracting the
harmonic from the actual signal) to contain harmonic content as well, and this affects
the residual. Thus, in our experiments ahead, we only work on reconstructing the
harmonic component of audio with variable pitch contours.
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6.2 Continuous f0 Analysis of Harmonic Component

6.2 Continuous f0 Analysis of Harmonic Component

6.2.1 Reconstruction

We train our harmonic network on all the 3 octaves of the Carnatic Violin Dataset
Table 3.3 to give it information about all the notes. Having trained it, we then perform
the framewise reconstruction of the variable pitch contour, with the conditioning variable
being the pitch value for that frame. It is similar to the procedure shown in the lower
branch of Figure 5.10, except that the f0 corresponds to the variable pitch contour.
Figure 6.5 shows an input and reconstructed spectrogram with the red curve in the
reconstruction indicating the extracted pitch.

Figure 6.5: Spectrograms of Input and Reconstructed Audio

The results are as we expect; our network is able to successfully reconstruct the
variable pitch contour in-spite of having been trained only on the fixed notes (refer
Figure 6.1). However, what is observable from Figure 6.5 is the clear lack of the residual
(in terms of the spectrogram appearing less noisy) for the reconstructed audio. However,
the successful reconstruction of the harmonic strengthens our choice of representation
for the network - the parametric Source-Filter inspired model we use for audio is able
to ‘decouple’ the timbre and the pitch, and by conditioning the network on pitch, the
network can model the inter-dependencies.

6.2.2 Generation/Synthesis

Having successfully reconstructed variable f0 pitch contours, we now see if we can also
generate/synthesize variable pitch contours with the procedure discussed in section 5.4.
The only difference is that the pitch contour is variable instead of fixed. Figure 6.6
shows the spectrogram of a synthesized vibrato with the red line depicting the pitch
contour.
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Figure 6.6: Spectrogram of a Generated Vibrato

6.3 Listening Tests

Both in Chapter 5 and Chapter 6, we perform a series of experiments broadly labeled as
‘Reconstruction’ and ‘Generation’. In the reconstruction experiments, we reconstructed
test audio i.e. the audio the network has not been trained on. In the generation, we
provide the pitch as a conditional, sample points coherently from the latent space, and
then ‘synthesize’ the audio corresponding to the pitch input. We have reported the MSE
for the reconstruction experiments. However, the MSE need not directly correspond to
audio perception. Thus, to get more effective feedback on the quality of the audio
reconstructed/generated by the network, we conduct a simple informal listening test
with 2 experienced violinists.

Why do we consider feedback from only 2 violinists instead of crowd-sourcing our
survey? Firstly, we cannot guarantee the quality of feedback we receive from crowd-
sourcing the survey on a platform like Amazon Mechanical Turk. Second, there is no
guarantee that the people taking the survey would have listened to or played the violin
to make insightful comments on it. Also, by asking specific questions to professionally
trained violinists, we can zero in onto the perceptually salient aspects of violin audio.
We will refer to the two violinists as V1 and V2. V1 has been trained in Carnatic Violin
and Vocal for 16 years. V2 has been trained in Carnatic Violin and Vocal for 14 years.
Both of them have been trained on the acoustic violin. We present the two violinists
with audio files in an online notebook2, and ask the violinists to listen to these. We
then ask a series of questions which will allow us to obtain a better insight about the
perceptual quality of the audio.

2https://www.ee.iitb.ac.in/student/~krishnasubramani/LT.html
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6.3 Listening Tests

6.3.1 Network Reconstruction

We ask the violinists to listen to listen to the network reconstruction of both fixed pitch
(as presented in Chapter 5) and variable pitch contours as presented in this chapter.

Fixed Pitch

We evaluate the outputs of the 3 networks which jointly model the harmonic and the
residual (detailed in section 5.3). We consider the upper octave notes because the
residual is more significant in the higher frequencies. We present the violinists with
4 audio clips each of two notes, Sa and Ri2. The 4 audio clips for each note are the
original audio, and the three network reconstructions (INet, JNet and ConcatNet) (the
harmonic and residuals are modeled by the networks, and added together to obtain the
final output from the network).

For both the notes Sa and Ri2, both violinists V1 and V2 found it difficult to
distinguish the original note from the INet reconstructed note. They observed the
residual to be a bit louder than the original in the reconstruction, but still perceived
it as natural. When we say natural here, we mean that it sounds similar to the input,
and can be produced on an acoustic violin. The JNet reconstructed note is perceived
as slightly less natural. The ConcatNet reconstructed note is however perceived to be
noisy i.e. the residual is noisy. There is also a change in the timbral quality of the note.
Both V1,V2 noted that it sounded like a poorly recorded violin note.

From this, we can make an observation that simple concatenation of the harmonic
and residual (ConcatNet) is not an optimal method to model inter-dependencies. How-
ever, between independent modeling (INet) and joint modeling (JNet), INet seems to
be more natural, though JNet is also perceived to be natural.

Variable Pitch Contours

We only consider the harmonic section of INet here, because, as mentioned above, the
residual for the variable pitch contours is not extracted properly (contains significant
harmonic content). We use short snippets from Raga Mayamalavagowla and Raga
Shankarabharanam containing Gamaka segments. We then convert these to their para-
metric representation, and only reconstruct the harmonic portion. We then present the
network reconstructed audio, and ask the violinists to compare it to both the actual
audio and the harmonic parametric version of the audio.

Both V1 and V2 spotted the difference between the original audio and its har-
monic representation. They commented that the harmonic representation lacked the
bow movements at the note onsets. V1 made an interesting comment, he said that there
were a few artifacts in the harmonic representation, which he compared to the artifacts
introduced when one uses the autotune software. This was especially prominent during
the note slides, where he felt some slight distortion was present. When presented with
the INet reconstruction of the same, both V1 and V2 comment that there is a slight
timbral change in the reconstruction. V1 additionally commented that if someone were
not to pay too much attention to the audio, then both the harmonic version and the
network reconstruction could be passed of as natural sounding violin audio.

Their observations on the distortion during glides is interesting. It tells us the that
the parametric representation we use for the audio is still not perfect. As we explain
in the previous section, pYIN is not without estimation errors, thus these could be
responsible for affecting the quality of the reconstructed audio.
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6.3.2 Network Generation

We give fixed and variable pitch contours as conditional inputs to our network. The
network has been trained on all available notes of all three octaves. We then present
these generated audio to the violinists and ask them for their opinion on it.

Fixed Pitch

The network generated notes were immediately perceived to be synthetic akin to a
complex tone not filtered by violin body and not at all like an acoustic violin. Both V1
and V2 comment that it sounded like an electronic violin, or like a violin note played on
a MIDI synthesizer. The generated note sounded ‘too perfect’ to be played by humans
i.e. there was minimal (or almost no) variability in the pitch, loudness and timbre. Even
after a vibrato was added to the generated tones, they are still not perceived as natural.
This is because the vibrato sounded too ‘perfect’. Real players would have variations
within the vibrato itself (variations in vibrato depth and frequency) which contribute
to its perceived naturalness.

Continuously Varying Pitch

The procedure is exactly the same as the previous fixed pitch note generation, except
that we provide a continuously varying pitch contour as the conditional variable. We
extract the pitch from short snippets of Raga Mayamalavagowla and Raga Shankarab-
haranam containing Gamaka segments, and provide them as the conditional input to
our harmonic network, and synthesize the audio. In this case as well, both the violin-
ists comment that the network generated audio does not sound like an acoustic violin,
rather, it sounds like an electronic violin. Also, because of the lack of bow noise, the
audio is perceived to sound artificial. The lack of dynamic variability (the synthesized
audio has the same loudness throughout) also contributes to its artificiality. V1 however
does comment that since the pitch movements are common in Carnatic Music, these
synthesized notes sound a bit more natural than the fixed pitch ones discussed before
this.

This brings us again to the importance of sampling the latent space for audio syn-
thesis. We simply perform a random walk with small step-size. However, as we learned
from the violinists, this random walk is not enough to introduce variability into the syn-
thesized note- it still sounds artificial. How do we pinpoint and say that the sampling
trajectory is the reason? This is because, our network is still able to reconstruct notes
quite well (as commented by the violinists in the previous section, for INet and JNet,
the reconstruction and actual note sound quite similar). The only difference in recon-
struction and generation is that in reconstruction, we project the input onto the latent
space, and then sample in the order of the frames projected. However, for generation,
we do not sample in that order, we do so randomly. Doing this random walk to generate
the harmonic component still generates audio that at least sounds harmonic. However,
if we do this for the residual component, the generated residual simply sounds like noise,
and not at all like a violin bow sound. This is a drawback in our model that has to
be addressed if one wants to generate more realistic audio from our model. To address
the issue of sampling effectively from the latent space, we could follow the procedure
highlighted in [53] where the authors train neural networks to traverse the latent space.
Similar to their approach, we could train another neural network to learn an effective
sampling trajectory from the reconstruction of the note recordings. This would allow
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6.4 Graphical User Interface for Experiments

us to generate more realistic sounding audio from the network.

6.4 Graphical User Interface for Experiments

To easily demonstrate our networks capabilities, and to allow people to interact with
our network more easily, we present a Graphical User Interface (GUI) for researchers to
interact and play around with our code more easily. A screenshot of our GUI is shown
in Figure 6.7.

Figure 6.7: GUI Snapshot

A more simplistic GUI could be designed for musicians instead of researchers. It
could take as input the midi notes directly from the instruments, and then render a
synthesized accompaniment accordingly. Our GUI does three things,

1. fixedP : Reconstruction of fixed pitch notes

2. varP : Reconstruction of continuously varying pitch contour audio

3. Generation: Synthesis of notes in two ways; (1). Provide Vibrato parameters
or (2). Provide an external monophonic audio file whose pitch contour will be
extracted and a violin rendering corresponding to the extracted pitch will be syn-
thesized.

In the first two, the GUI asks for the PyTorch trained network (the .pth file which
contains the weights and network description), and the input audio which has to be
reconstructed by the network. In the third case, you have to provide the external
monophonic audio file whose pitch has to be extracted, or the vibrato parameters for
the generated audio.
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Chapter 7

Conclusion

The goal of this work was to explore autoencoder frameworks in generative models
for audio synthesis of instrumental tones. We critically reviewed recent approaches
and identified the problem of natural synthesis with flexible pitch control. We then
presented VaPar Synth - our variational parametric model to generate audio. Through
our parametric representation, we can decouple the ‘timbre’ and ‘pitch’, and can thus
rely on the network to model the inter-dependencies. We use a variational model as
it gives us the ability to directly sample points from the latent space. Moreover, by
conditioning on the pitch, we can generate the learnt spectral envelope for that pitch
(something which would not be possible in a vanilla VAE), thus giving us the power to
vary the pitch contour continuously in principle. We then present a few experiments
demonstrating the capabilities of our model. To the best of our knowledge, we have not
come across any work using a parametric model for musical tones in the neural synthesis
framework, especially exploiting the conditioning function of the CVAE. To aid in our
analysis, we also introduce a new Carnatic Violin dataset. With the aid of this dataset,
we highlight the necessity of pitch conditioning for the harmonic component. We also
provide motivation to jointly model the harmonic and residual components instead of
independently modeling them. We also present a GUI for researchers to interact with
and understand our work more easily.

An immediate application of our work is in an automatic accompaniment system for
singing voice, as depicted in Figure 7.1. Consider you have a singer singing a song, and
you wanted a musical instrument to accompany her/him. Common accompaniments
in Indian Classical Music are the harmonium in Hindustani and the Violin in Carnatic
Music. Thus, with the singer’s melodic pitch tracked, it would be possible to ‘generate’
an accompaniment for the song by giving this as input to a pre-trained model, as we
showed in Chapter 6.

Extract Pitch Contour VaPar
Synth

Violin Melody

Figure 7.1: Accompaniment Generation

An accompaniment system solely based on the pitch contour will not capture the
expressivity of an actual violin player. Hence, to capture this ‘expressivity’, there should
be another block that can model this. That is simpler said than done, which highlights
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one of the challenges involved in expressive audio synthesis.
Another application of our model could be in Source Separation. Instead of view-

ing Source Separation as a ‘Demixing’ problem where you separate out the individual
sources, it could be alternately viewed as a source identification and reconstruction prob-
lem. The task thus boils down to identifying the sources and using generative models
to reconstruct the sources. The potential advantage of this approach is the ability to
separate the sources into high quality audio with the use of powerful generative models
(high quality synthesis is very desirable for musical source separation!). Consider the
task of separating the sources in a violin - mridangam mixture. Instead of learning
to separate the two instruments, we could instead do the following; We could extract
the pitch, residual and dynamic features corresponding to the violin, and then use our
model to generate the violin audio. Thus, we effectively ‘separate’ out the violin from
the violin-mridangam mixture.

A creative application of our work is in timbre conversion. We can train our model
on different instruments, and then interpolate in the latent space to create ‘hybrid’
timbres. Or, we can simply use the pre-trained models to convert one instrument audio
to another.

Our model does suffer from two main drawbacks, which are,

1. Our frame-wise modeling procedure does not take into account the temporal evo-
lution of audio. By only modeling the sustain portion of the audio, we fail to take
into account the attack and decay portions of audio, that might be perceptually
relevant to certain instruments.

2. Generating high quality audio from the network is still a challenging task because
of the sampling procedure we follow, which fails to synthesize a perceptually good
harmonic and residual audio from the network.

Our main contributions are:

- Published and presented our work at ICASSP 2020 and ISMIR 2019 and submitted
to ISMIR 2020. Refer to List of Publications for more details on the publications

- Documented code for our model, experiments and GUI open sourced on our
GitHub repositories12

- Our Carnatic Violin Dataset, which we plan on making open source to the Music
Information Retrieval research community

It was a really great experience to explore Generative Models for Audio Synthesis in
this thesis. We hope that our dataset and code encourages further research in Carnatic
music synthesis.

1https://github.com/SubramaniKrishna/VaPar-Synth
2https://github.com/SubramaniKrishna/HpRNet
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List of Publications

1. VaPar Synth - A Variational Parametric Model for Audio Synthesis
Published as a Conference Paper in the International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2020 [54]
Abstract: With the advent of data-driven statistical modeling and abundant
computing power, researchers are turning increasingly to deep learning for audio
synthesis. These methods try to model audio signals directly in the time or fre-
quency domain. In the interest of more flexible control over the generated sound,
it could be more useful to work with a parametric representation of the signal
which corresponds more directly to the musical attributes such as pitch, dynam-
ics and timbre. We present VaPar Synth - a Variational Parametric Synthesizer
which utilizes a conditional variational autoencoder (CVAE) trained on a suitable
parametric representation. We demonstrate our proposed model’s capabilities via
the reconstruction and generation of instrumental tones with flexible control over
their pitch.

2. HpRNet : Incorporating Residual Noise Modeling for Violin in a Variational Para-
metric Synthesizer
Submitted as a Conference Paper to the International Society for Music Informa-
tion Retrieval (ISMIR) 2020, Under Review [55]
Abstract: Generative Models for Audio Synthesis have been gaining momentum
in the last few years. More recently, parametric representations of the audio signal
have been incorporated to facilitate better musical control of the synthesized out-
put. In this work, we investigate a parametric model for violin tones, in particular
the generative modeling of the residual bow noise to make for more natural tone
quality. To aid in our analysis, we introduce a dataset of Carnatic Violin Record-
ings where bow noise is an integral part of the playing style of higher pitched
notes in specific gestural contexts. We obtain insights about each of the harmonic
and residual components of the signal, as well as their interdependence, via ob-
servations on the latent space derived in the course of variational encoding of the
spectral envelopes of the sustained sounds.

3. Generative Audio Synthesis with a Parametric Model
Presented extended abstract as a Poster at the International Society for Music
Information Retrieval (ISMIR) 2019 [56]
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An audio analysis library for music information retrieval,” in Britto A, Gouyon F,
Dixon S, editors. 14th Conference of the International Society for Music Informa-
tion Retrieval (ISMIR); 2013 Nov 4-8; Curitiba, Brazil.[place unknown]: ISMIR;
2013. p. 493-8., International Society for Music Information Retrieval (ISMIR),
2013.

[34] M. Caetano and X. Rodet, “Musical instrument sound morphing guided by per-
ceptually motivated features,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 8, pp. 1666–1675, 2013.

[35] W. Slawson, “The color of sound: a theoretical study in musical timbre,” Music
Theory Spectrum, vol. 3, pp. 132–141, 1981.

[36] M. Caetano and X. Rodet, “A source-filter model for musical instrument sound
transformation,” in 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 137–140, IEEE, 2012.

[37] S. IMAI, “Spectral envelope extraction by improved cepstrum,” IEICE, vol. 62,
pp. 217–228, 1979.

[38] A. V. Oppenheim, “Speech analysis-synthesis system based on homomorphic filter-
ing,” The Journal of the Acoustical Society of America, vol. 45, no. 2, pp. 458–465,
1969.

[39] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a sinusoidal
representation,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 34, no. 4, pp. 744–754, 1986.

[40] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

http://www.fiddlingaround.co.uk/india/
http://www.fiddlingaround.co.uk/india/


[41] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained
variational framework.,” Iclr, vol. 2, no. 5, p. 6, 2017.

[42] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using
deep conditional generative models,” in Advances in neural information processing
systems, pp. 3483–3491, 2015.

[43] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS
Autodiff Workshop, 2017.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[45] J. W. Beauchamp, “Comparison of vocal and violin vibrato with relationship to the
source/filter model,” in Studies in Musical Acoustics and Psychoacoustics, pp. 201–
221, Springer, 2017.

[46] M. V. Mathews and J. Kohut, “Electronic simulation of violin resonances,” The
Journal of the Acoustical Society of America, vol. 53, no. 6, pp. 1620–1626, 1973.

[47] H. Fletcher and L. C. Sanders, “Quality of violin vibrato tones,” The Journal of
the Acoustical Society of America, vol. 41, no. 6, pp. 1534–1544, 1967.

[48] H. Fletcher, E. D. Blackham, and O. N. Geertsen, “Quality of violin, viola,’cello,
and bass-viol tones. i,” The Journal of the Acoustical Society of America, vol. 37,
no. 5, pp. 851–863, 1965.

[49] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[50] R. C. Maher and J. W. Beauchamp, “Fundamental frequency estimation of musical
signals using a two-way mismatch procedure,” The Journal of the Acoustical Society
of America, vol. 95, no. 4, pp. 2254–2263, 1994.

[51] M. Mauch and S. Dixon, “pyin: A fundamental frequency estimator using proba-
bilistic threshold distributions,” in 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 659–663, IEEE, 2014.
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