Journal article Open Access

Countering Intelligent Dependent Malicious Nodes in Target Detection Wireless Sensor Networks

Althunibat, Saud; Antonopoulos, Angelos; Kartsakli, Elli; Granelli, Fabrizio; Verikoukis, Christos

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20200120145239.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Grant numbers : This work is funded by CellFive (TEC2014-60130-P) and by the Catalan Government 2014-SGR-1551.© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</subfield>
  <controlfield tag="001">399241</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Antonopoulos, Angelos</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IQUADRAT Informatica S.L</subfield>
    <subfield code="a">Kartsakli, Elli</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Trento</subfield>
    <subfield code="a">Granelli, Fabrizio</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Verikoukis, Christos</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1231696</subfield>
    <subfield code="z">md5:61d870cfa6b075d615b77ec5041ebe78</subfield>
    <subfield code="u"> Intelligent Dependent Malicious Nodes.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-09-01</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">8627 – 8639</subfield>
    <subfield code="n">23</subfield>
    <subfield code="p">IEEE Sensors Journal</subfield>
    <subfield code="v">16</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Al-Hussein Bin Talal University (AHU)</subfield>
    <subfield code="a">Althunibat, Saud</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Countering Intelligent Dependent Malicious Nodes in Target Detection Wireless Sensor Networks</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">692480</subfield>
    <subfield code="a">Flexible FE/BE Sensor Pilot Line for the Internet of Everything</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Target detection wireless sensor networks (WSNs), where binary decisions are transmitted to declare the presence or absence of a given target, are expected to have a fundamental role in the Internet of Things era. However, their simplicity makes these networks very susceptible to malicious attacks, while the problem is aggravated in the presence of intelligent malicious nodes that adapt their strategy depending on the behavior of other nodes in the network. In this paper, first, we analytically demonstrate that dependent and independent malicious nodes have the same impact on the overall performance of target detection WSNs in terms of detection and false alarm rates. Then, taking into account that dependent malicious users cannot be detected by conventional algorithms, we introduce an effective algorithm that detects malicious nodes in the network regardless of their type and number. Finally, theoretical and simulation results are provided to show the effects of dependent malicious nodes and analyze the performance of the proposed algorithm compared with the existing state-of-the-art works.&lt;/p&gt;</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/JSEN.2016.2606759</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 45
Downloads 62
Data volume 76.4 MB
Unique views 45
Unique downloads 62


Cite as