Journal article Open Access

Countering Intelligent Dependent Malicious Nodes in Target Detection Wireless Sensor Networks

Althunibat, Saud; Antonopoulos, Angelos; Kartsakli, Elli; Granelli, Fabrizio; Verikoukis, Christos


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/08743498-1e97-4253-ba37-8bb073869b9e/Countering%20Intelligent%20Dependent%20Malicious%20Nodes.pdf"
      }, 
      "checksum": "md5:61d870cfa6b075d615b77ec5041ebe78", 
      "bucket": "08743498-1e97-4253-ba37-8bb073869b9e", 
      "key": "Countering Intelligent Dependent Malicious Nodes.pdf", 
      "type": "pdf", 
      "size": 1231696
    }
  ], 
  "owners": [
    19395
  ], 
  "doi": "10.1109/JSEN.2016.2606759", 
  "stats": {
    "version_unique_downloads": 62.0, 
    "unique_views": 45.0, 
    "views": 45.0, 
    "version_views": 44.0, 
    "unique_downloads": 62.0, 
    "version_unique_views": 44.0, 
    "volume": 76365152.0, 
    "version_downloads": 62.0, 
    "downloads": 62.0, 
    "version_volume": 76365152.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/JSEN.2016.2606759", 
    "latest_html": "https://zenodo.org/record/399241", 
    "bucket": "https://zenodo.org/api/files/08743498-1e97-4253-ba37-8bb073869b9e", 
    "badge": "https://zenodo.org/badge/doi/10.1109/JSEN.2016.2606759.svg", 
    "html": "https://zenodo.org/record/399241", 
    "latest": "https://zenodo.org/api/records/399241"
  }, 
  "created": "2017-03-15T13:53:23.726891+00:00", 
  "updated": "2020-01-20T14:52:39.392630+00:00", 
  "conceptrecid": "789916", 
  "revision": 7, 
  "id": 399241, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/JSEN.2016.2606759", 
    "description": "<p>Target detection wireless sensor networks (WSNs), where binary decisions are transmitted to declare the presence or absence of a given target, are expected to have a fundamental role in the Internet of Things era. However, their simplicity makes these networks very susceptible to malicious attacks, while the problem is aggravated in the presence of intelligent malicious nodes that adapt their strategy depending on the behavior of other nodes in the network. In this paper, first, we analytically demonstrate that dependent and independent malicious nodes have the same impact on the overall performance of target detection WSNs in terms of detection and false alarm rates. Then, taking into account that dependent malicious users cannot be detected by conventional algorithms, we introduce an effective algorithm that detects malicious nodes in the network regardless of their type and number. Finally, theoretical and simulation results are provided to show the effects of dependent malicious nodes and analyze the performance of the proposed algorithm compared with the existing state-of-the-art works.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Countering Intelligent Dependent Malicious Nodes in Target Detection Wireless Sensor Networks", 
    "journal": {
      "volume": "16", 
      "issue": "23", 
      "pages": "8627 \u2013 8639", 
      "title": "IEEE Sensors Journal"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "789916"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "399241"
          }
        }
      ]
    }, 
    "access_right": "open", 
    "grants": [
      {
        "code": "692480", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::692480"
        }, 
        "title": "Flexible FE/BE Sensor Pilot Line for the Internet of Everything", 
        "acronym": "IoSense", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2016-09-01", 
    "creators": [
      {
        "affiliation": "Al-Hussein Bin Talal University (AHU)", 
        "name": "Althunibat, Saud"
      }, 
      {
        "affiliation": "Centre Tecnol\u00f2gic de Telecomunicacions de Catalunya (CTTC)", 
        "name": "Antonopoulos, Angelos"
      }, 
      {
        "affiliation": "IQUADRAT Informatica S.L", 
        "name": "Kartsakli, Elli"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Granelli, Fabrizio"
      }, 
      {
        "affiliation": "Centre Tecnol\u00f2gic de Telecomunicacions de Catalunya (CTTC)", 
        "name": "Verikoukis, Christos"
      }
    ], 
    "notes": "Grant numbers : This work is funded by CellFive (TEC2014-60130-P) and by the Catalan Government 2014-SGR-1551.\u00a9 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
45
62
views
downloads
Views 45
Downloads 62
Data volume 76.4 MB
Unique views 45
Unique downloads 62

Share

Cite as