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Abstract 10 

 11 

There has been a growing trend to couple different levels of modelling, such as going from 12 

first-principle calculations to the meso (e.g. kinetic Monte Carlo - KMC) and macro scale 13 

(e.g. computational fluid dynamics - CFD). In the current investigation, we put forward a 14 

CFD study of CO2 hydrogenation to methanol for heterogeneous reacting flows in reactors 15 

with complex shape geometries, coupled with first-principle calculations (density functional 16 

theory (DFT)). KMC operation simulations were also performed to obtain insight into the 17 

uppermost layer conditions during the reaction. With computational fluid dynamics, the focus 18 

was placed on the non-uniform catalytic reduction of carbon dioxide to formate, which we 19 

treated with a detailed mean-field first-principle microkinetic model, analysed, and 20 

corroborated with experiments. The results showed a good consistent agreement with 21 

experimental data. The formulated methodological approach paves the way towards full 22 

virtual multiscale system descriptions of industrial processing units, encompassing all 23 

conventional stages, from catalyst design to the optimisation of mass transfer parameters. 24 

Such a bridging is outlined for carbon capture and utilisation. 25 
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1. Introduction 32 

 33 

Coal and oil are the most common energy resources our society relies upon. Unfortunately, 34 

both form in the Slow Carbon Cycle, meaning that their use is an irreversible process for all 35 

practical purposes. Moreover, they contribute to the accumulation of CO2 in the atmosphere. 36 

They have been linked to climate change, which is believed to be anthropogenic and caused 37 

by increasing levels of the atmospheric CO2. Although fossil fuel resources are limited, 38 

replacing them with cleaner and sustainable substituents is not an easy task due to their 39 

importance in the economy. It is crucial that the this problem is addressed proactively (Song, 40 

2006). 41 

 42 

The methods of mitigating the greenhouse effect of CO2 have become a hot topic among 43 

researchers in recent years (Change and Impacts, 2003; Haszeldine, 2009; Ni et al., 2018; 44 

Wang et al., 2016). An attractive approach is hydrogenation of CO2 to methanol (Alsayegh et 45 

al., 2019; Huff and Sanford, 2011; Martin and Pérez-Ramírez, 2013; Toyir et al., 2001; Van-46 

Dal and Bouallou, 2013). The idea has spread among many fields. For instance, Biernacki et 47 

al. showed that by using electricity during surplus production in combination with a 48 

wastewater treatment plant, renewable methanol could be produced (Biernacki et al., 2018). 49 

Santos et al. screened various potential biogas sources (i.e. landfill, palm oil effluent, corn 50 

cobs and sorghum fermentation) and found that the palm oil effluent was presented the 51 

highest methanol yield (Santos et al., 2018). From a more theoretical point of view, Moradi et 52 

al. showed that sufficient optimization of packed bed reactors for CO2
 
hydrogenation could be 53 

made with the aid of CFD (Moradi et al., 2014). Nonetheless, carbon utilization (coal-to-54 

methanol) is not considered a renewable process but it is worth mentioning that a significant 55 

improvement was made in coal gasification to produce methanol. Highly efficient carbon 56 



utilization of coal-to-methanol process integrated with chemical looping hydrogen and air 57 

separation technology was shown to be able to drastically reduce the carbon fingerprint 58 

(Xiang et al., 2020). As of now, the synthesis of methanol via CO2 hydrogenation seems to be 59 

the only feasible process for the fixation of CO2 on a large scale (Tidona et al., 2013). 60 

Moreover, this process is already well established on the industrial scale. Presenting CO2 as a 61 

potential feedstock might instigate the companies dealing with fossil fuels to act as investors 62 

in the circular economy (Graciani et al., 2014).  63 

 64 

Currently, industrial processes for the production of methanol most commonly use Cu–65 

ZnO/Al2O3 (CZA) catalysts at 200-300 
o
C and 50-100 bar with a syngas feed (ARENA et al., 66 

2007; Saito and Murata, 2004; Tidona et al., 2013; Wambach et al., 1999; Yang et al., 2006). 67 

These systems suffer from a significant disadvantage: they require relatively high operating 68 

temperatures, which limit the theoretical yield of the entropically disfavoured reduction 69 

products. Several works reported the development of homogeneous catalysts for the low-70 

temperature conversion of CO2 to methanol (Huff and Sanford, 2011). However, the industry 71 

continues to prefer the CZA catalysts due to their low price, high durability and a favourable 72 

ratio between conversion and selectivity. As it is the case with many industrial catalytic 73 

processes, the technology for the production preceded the full understanding of the chemical 74 

system. Even though the CZA catalysts have been widely studied in the industry for over 40 75 

years, their optimization has relied primarily on empirical knowledge. Thus, the exact 76 

mechanism of the reaction pathway and the interplay of the catalytic surface have received 77 

much attention in academia in recent years and remain an important research topic. 78 

  79 

The questions of synergy between Cu in ZnO (Behrens et al., 2013, 2012; Burch et al., 1990) 80 

and the preferable carbon source (CO or CO2) for methanol remain open (Chinchen et al., 81 



1987; KLIER, 1982). In the quest to establish the exact reaction mechanism and the most 82 

effective catalyst, scientists tackle this problem with a theoretical approach. Recent ab inito 83 

studies of methanol synthesis have provided detailed descriptions of the reaction mechanism 84 

on various Cu-based catalysts (Behrens et al., 2012; Grabow and Mavrikakis, 2011; Kattel et 85 

al., 2017; Nakatsuji and Hu, 2000; Studt et al., 2013). Several DFT studies confirmed the 86 

early work of Chinchen et al., who showed that the formate pathway is predominant for the 87 

methanol production in a CO2/CO mixture on these types of catalysts (Chinchen et al., 1987).  88 

 89 

An optimal multi-scale linking and integration of atom-scale density functional theory (DFT) 90 

computations with meso scale (e.g. kinetic Monte Carlo - KMC) and macro scale (e.g. 91 

computational fluid dynamics - CFD) is gaining importance, particularly when considering 92 

the engineering and intensification of unconventional feedstock processing, as well as the 93 

design of emerging catalysis routes (Hagman et al., 2018; Kattel et al., 2017; Maestri and 94 

Cuoci, 2013; Posada-Borbón et al., 2018; Wu and Yang, 2017). In order to do so, it is 95 

mandatory that we understand the reacting system on the atomic scale. Grabow and 96 

Mavrikakis presented a comprehensive mean-field microkinetic model for the methanol 97 

synthesis and water-gas-shift reactions (Grabow and Mavrikakis, 2011). Despite extensive 98 

DFT calculations, their mean-field microkinetic model required some corrections of DFT-99 

calculated values for the results to match the experimental data. In a step forward towards 100 

industrial application, Maestri presented the feasibility of coupling mean-field microkinetic 101 

model with CFD (Maestri, 2017). In their most recent work Maestri et al. presented CO 102 

oxidation on ruthenium oxide,  showcasing the capability of the approach in making the 103 

multiscale simulation of complex chemical reactors with tabulated KMC model possible 104 

(Bracconi and Maestri, 2020).  Despite its potential, its applicability has been so far proved 105 



only for systems with a limited number of elementary events and species (such as the CO 106 

oxidation on metal or oxide surfaces). 107 

 108 

Fig. 1. A general approach to multiscale modelling for real unit engineering. 109 

 110 

Although multiscale modelling is a powerful instrumental approach for real unit engineering, 111 

fully integrated framework is yet to be developed. Ultimately, it is desirable to obtain a 112 

comprehensive description of an operating reactor from the lowest level to the macroscopic 113 

scale as shown in Fig. 1. It has become clear from this brief literature review that the existing 114 

frameworks are more veraciously described as dual-scale modelling, coupling only two levels 115 

together. A further coupling from the smallest scale up to macroscopic transport in a given 116 

reactor is still in its infancy, as is any realistic account of the microstructure of real catalysts 117 

(Bruix et al., 2019).   118 

 119 

In this work, we present a piece of the puzzle towards a fully integrated framework of 120 

multiscale modelling of CO2 hydrogenation to methanol on a commercial Cu-based catalyst. 121 



To the best of our knowledge, the presented work is among the first that put into account all 122 

three level (i.e. DFT, KMC and DFT) on a real system process. This is a continuation of our 123 

previous work (Huš et al., 2017b), where we obtained first-principle data for the microkinetic 124 

scheme. Herein, we present the results of a detailed kinetic Monte Carlo modelling, aimed at 125 

elucidating the evolution of the catalyst surface. We show how the surface coverage of 126 

different intermediates varies with time and conditions in order to obtain microscopic picture 127 

of the catalyst surface. The KMC results were used for the development and implementation 128 

of a detailed mean-field first-priciple microkinetic scheme for heterogeneous laminar reacting 129 

flows into computational fluid dynamics (CFD). Since some discrepancy between first-130 

principle mean field microkenetic model and experiments was expected, we present a novel 131 

approach to overcome this problem via single pore approximation.  The final results of CFD 132 

were consistent with experiments, which proves the feasibility of a fully computational 133 

approach to model real system process from catalyst to reactor. 134 

 135 

2. The governing equations 136 

 137 

Multicomponent mixtures generally require a rather complex convection-diffusion description 138 

by the Maxwell-Stefan equations. Due to their high computational cost, simplifications such 139 

as the mixture-average approach are often needed (COFFEE and HEIMERL, 1981). For 140 

instance, we can assume that all species except one move with nearly the same diffusion 141 

velocity, which leads to a Fickian-like description of the diffusion velocity 𝑽𝑘: 142 

 143 

𝑽𝑘 = −
𝐷𝑘,𝑚

𝑌𝑘
∇𝑌𝑘 , [1] 144 

 145 



where 𝐷𝑘,𝑚 is the average diffusion coefficient of the k
th

 species mixture and Yk is the mass 146 

fraction. Assuming that the Lewis number (Lek) equals unity, Eq. 1 simplifies to: 147 

 148 

𝑽𝑘 = −


𝐿𝑒𝑘𝑐𝑃𝜌
∇𝑌𝑘 ,  [2] 149 

 150 

where cp is the specific heat capacity of the mixture at constant pressure, ρ is the mixture 151 

density and  is the mixture thermal conductivity. This oversimplification of the convective-152 

diffusion transport can lead to a significant error in the flame velocities and concentration 153 

profiles of premixed laminar reacting flames and should be omitted if possible(COFFEE and 154 

HEIMERL, 1981). However, in the case of laminar reacting flows in packed bed reactors 155 

(PBR), this is still a reasonable assumption.  156 

 157 

When axial dispersion and resistance of external/internal mass transport are negligible, the 158 

conversion is almost independent of the mass diffusion coefficient, as the main means of 159 

transport becomes advection. In other words, the precision in determining Dk,m does not affect 160 

the accuracy of the result. In practice, this holds true for PBRs operating at high Peclet and 161 

low Damköhler numbers (Kamer et al., 2017). To determinate the effect of particle size on the 162 

resistance of external/internal mass transport, we prepared samples using crushing and 163 

screening of catalyst pellets (see supplementary). We could not observe any significant effect 164 

of the particle size on CO2 conversion, meaning the reactor was operating in the kinetic 165 

regime. Moreover, no axial or intermolecular space (space between particles) concentration 166 

gradients were observed via CFD calculations, which suggests that external mass transfer is 167 

negligible. Therefore, we used Eq. 2 to approximate diffusion coefficient, since no special 168 

care was needed to describe the diffusion. 169 

 170 



2.1. Gas phase 171 

 172 

Assuming Newtonian flow, the conservation of global mass, momentum, energy, and the 173 

mass of individual species can be summarized as  174 

𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝐯) = 0 [3] 175 

𝜕

𝜕𝑡
(𝜌𝐯) + ∇(𝜌𝐯𝐯) = −∇𝑝 + ∇𝝉 [4] 176 

 177 

𝜕

𝜕𝑡
(𝜌𝑌𝑘) + ∇ ∙ (𝜌𝑌𝑘𝐯) = −∇ ∙ (𝜌𝑌𝑘𝑽𝑘 + 𝑟̇𝑘) [5] 178 

 179 

𝜕

𝜕𝑡
(𝜌ℎ𝑠) + ∇ ∙ (𝜌ℎ𝑠𝐯) = ∇ ∙ (



𝑐𝑃
∇ℎ𝑠) +

D𝑝

D𝑡
+ 𝑞̇𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 . [6] 180 

 181 

In these equations, t denotes time, v designates the velocity vector, ρ is the mixture density,  182 

is the fluid stress tensor, p is the pressure, and 𝑟̇𝑘, 𝑞̇𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 and hs are the reaction rates of the 183 

kth species, the energy source due to reaction and the sensible enthalpy, respectively. The 184 

mixture density and transport properties were calculated from the ideal gas law and 185 

Sutherland’s formula. Since experiment results did not show significant temperature gradient 186 

along the reactor, energy equation (eq. 6) was solved without chemical source (see 187 

supplementary).   188 

 189 

2.2.  Surface species 190 

 191 

To determine the coverage of surface species site, a detailed mickrokinetic model was 192 

developed based on our previous work (Huš et al., 2017b), which we summarise in the next 193 



section. The species surface coverages were solved as a set of differential equations, defined 194 

as: 195 

 196 

𝜕𝜃𝑗

𝜕𝑡
= ∑ 𝑆𝑖𝑗𝑟𝑖 𝑗 = 1, … . , 𝑁𝑆𝑆𝑛𝑟

𝑖=1  , [7] 197 

 198 

where j is the surface coverage of the j
th

 species, Sij is the “stoichiometric coefficient” 199 

(positive for products and negative for reactants), denoting how many times the j
th

 species 200 

occurs in the i
th 

reaction, ri is the elementary reaction rate, nr is the number of reactions and 201 

NSS is the number of the surface species and the number of free surface sites types. As this set 202 

of equations is not independent, an additional constraint 203 

 204 

∑ 𝜃𝑗 = 1𝑁𝑆𝑆
𝑗=1  [8] 205 

 206 

must be used in place of one of the Eq. (7) in order to conserve the total number of surface 207 

sites.  208 

 209 

2.3. Microkinetic model 210 

 211 

The question of the preferable carbon source (CO or CO2) for methanol synthesis is still a 212 

matter of speculation and most likely depends upon the catalyst. Therefore, we adopted the 213 

reaction pathway for hydrogenation of CO2 to methanol on industrial Cu/ZnO/Al2O3 (CZA) 214 

catalyst from our previous work, where a comprehensive reaction network was proposed 215 

based on the first-principle DFT calculation, as shown in Fig. 2.  Among the most widely 216 

studied pathways, reverse water gas shift (RWGS) and formate route (Grabow and 217 



Mavrikakis, 2011; Yang et al., 2010), possible side reactions (i.e. HCOOH-variant of the 218 

formate route, CH2OH formation and hydrogenation of CO) were also considered.  219 

  220 

The computational time needed to resolve reacting flows with aid of CFD is highly dependent 221 

on the number of elementary reaction steps included in the microkinetic scheme. Therefore, it 222 

is desirable to omit any elementary reactions that would lead to dead-ends (e.g. the reaction 223 

not proceeding or being too slow due to a high activation energy) or because of a competitive 224 

reaction with faster kinetics. In this study, microkinetic scheme was progressively simplified 225 

based on the previous results of DFT calculations, KMC simulations (see also next section) 226 

and experimental data.  227 

 228 

First, all side reactions that lead to HCOOH and CH2OH formation were eliminated since 229 

these products were not detected during the experiments. Second, according to the DFT 230 

calculations, the dissociation of HCOO** to HCO* and O* has a prohibitively high activation 231 

energy. Third, the KMC simulation was conducted for representative operating conditions of 232 

methanol synthesis in the industry (i.e. T = 500 K and P = 40 bar). The KMC simulation was 233 

running until the ergodicity condition was satisfied, meaning that the system was well 234 

equilibrated and its time average behaviour corresponded to the space averaged 235 

thermodynamic state. For the equilibrated system event frequency analysis was performed for 236 

each elementary step, as depicted in Fig. 2, which gives valuable insight into the mechanism 237 

and thus provides further indicators for the simplification of the microkinetic scheme. 238 

 239 



 240 

Fig. 2. Left – A scheme of all the considered elementary reaction steps. Colours represent the 241 

reaction event frequency (bar length correspond to normalized logarithmic value of reaction 242 

event frequency).  The intermediates along the most probable route are typeset in bold. Right 243 

– A simplified reaction scheme for CO2 hydrogenation to methanol. 244 

 245 

The KMC results irrefutably proved that methanol is produced via the formate route with the 246 

following intermediates: HCOO**, H2COO**, H2COOH**, H2CO* and CH3O*. Firstly, 247 

adsorbed or gaseous CO2 is hydrogenated to HCOO**. HCOO** is further hydrogenated to 248 

either HCOOH** or H2COO**, the letter reaction being more favourable on CZA catalyst 249 

(Huš et al., 2017b). Due to a high activation barrier of H2COO** dissociation (0.81 eV), 250 

H2COO** is next hydrogenated to H2COOH** (0.32 eV) and then cleaved into H2CO* and 251 



OH*. Finally, H2CO* is hydrogenated to CH2OH* or H3CO*. However, the event frequency 252 

of the latter reaction is a few orders of magnitude higher and thus preferred.  253 

 254 

The formation of CO is usually ascribed to the RWGS route, which is an undesired reaction 255 

leading to the lower selectivity towards methanol. It is the most important competing reaction, 256 

which predominates at higher temperatures (Huš et al., 2017b). However, the KMC 257 

simulation indicates that CO is preferentially formed via formate route, which is inconsistent 258 

with previous works. The decomposition reaction of c-COOH* to CO* and OH* (RWGS) is 6 259 

times less frequent than dehydrogenation of HCO* (formate route), meaning that majority of 260 

CO is essentially a backformation from the H2CO* intermediate. It should be noted that the 261 

preferred route of CO formation is temperature dependent and the RWGS route would 262 

eventually prevail over the formate route at higher temperatures. However, herein we focused 263 

on the industrial operating conditions of methanol synthesis which usually require 264 

temperatures below 550 K (Lange, 2001; Rezaie et al., 2005).     265 

     266 

On the basis of previous considerations, we winnow out the most relevant elementary steps 267 

for the methanol synthesis. In Fig 2, all intermediate species considered in this study are 268 

typeset in bold and their corresponding reactions are summarised in Table 1. The overall 269 

reaction model consists of 11 intermediates and five gaseous species, participating in 15 270 

reversible elementary reaction steps (see Table 1). Activation and reaction energies were 271 

adopted from our previous work and are labelled next to the corresponding elementary 272 

reaction in Table 1 (Huš et al., 2017b). 273 

 274 

 275 



Despite the fact that DFT gives a solution on the quantum level and thus describes the 276 

investigated systems very precisely, the methods harbours several caveats. One of them is 277 

directly related to the method itself. There are inherent assumptions within DFT, such as the 278 

choice of the exchange correlation functional, the treatment of entropy of the adsorbates etc. 279 

For instance, Stud et al. showed the outcome of DFT calculations can be highly dependent on 280 

the functional used. They claimed that the highest activation barrier for CO2 hydrogenation to 281 

methanol could vary as much as 0.4 eV when comparing functionals with or without van der 282 

Waals corrections (Studt et al., 2013). However, not all discrepancies between the DFT results 283 

and experiments should be assigned to the methodology of first-principle calculations. The 284 

model system used in DFT is never a true description of a realistic system. These are too 285 

complex (many crystal planes, steps and defects, phase transitions, surface rearrangements 286 

etc.) and varied.  In specific, Grabow and Masvrikakis showed that even extensive first-287 

principle modelling of methanol production on Cu(111) is inadequate to match the 288 

experiments. In the end, they were still resorted to fitting the theoretical input (Grabow and 289 

Mavrikakis, 2011). 290 

 291 

Nevertheless, DFT is very useful in establishing trends, reaction mechanisms, reaction 292 

equilibria and gaining valuable insight into the microscopic behaviour during the reaction. In 293 

this work, we resorted to the following constrains for modifying first-principle microkinetic 294 

model: (i) finding a minimum set of elementary reactions to describe the observed conversion 295 

and selectivity; (ii) adjusting the activation barriers and reaction energy within the accuracy of 296 

the DFT calculations (error between  0.2 -0.7 eV for PBE functionals(Maestri, 2017)); (iii) all 297 

changes resulting in the same equilibrium state as experimentally measured. With an approach 298 

akin to (Grabow and Mavrikakis, 2011), a list of correction factors, as presented in Table 1, 299 

were obtained for reactions 4, 7 and 10 (fitting procedure on a single-pore approximation for 300 



the PBR showed that altering only kinetic parameters for the three reactions is sufficient to 301 

satisfy all the constrains – see section  4.2.3). For details on the calculation of reaction rates 302 

(used as input for Eq. 7) from the transition state theory, the reader is referred to our previous 303 

work (Huš et al., 2017b). 304 

 305 

Table 1: The ZPE-corrected activation energies (EA) and reaction energies (ΔE) for all 306 

elementary steps considered in this study. For this study, these values are adjusted with 307 

addition of the correction factors Ea and E. 308 

i Elementary reaction Ea 

[eV] 
Ea 

[eV] 
E/EAd 

[eV] 
E 

[eV] 

1 H2 + 2* → 2 H*  0.47 / -0.13 / 

2 CO2 + 2* → CO2**  / / -0.23 / 

3 H* + CO2** → HCOO** + * 0.59 / -0.65 / 

4 H* + HCOO** → H2COO** + * 0.90 -0.27 0.32 -0.1 

5 H* + H2COO** → H2COOH** + * 0.32 / -0.23 / 

6 H2COOH** → CH2O* + OH* 0.81 / 0.16 / 

7 H* + CH2O* → CH3O* + * 0.38 0.038 -0.79 0.153 

8 H* + CH3O* → CH3OH* + * 0.46 / -0.20 / 

9 H* + OH* → H2O* + * 0.50 / -0.18 / 

10 H* + HCO* → CH2O* + * 0.41 -0.164 -0.29 0.087 

11 H* + CO* → COH* + * 1.24 / 0.63 / 

12 CO + * → CO* / / -0.65 / 

13 CH2OH* → CH3OH + * 0.72 / -1.09 / 

14 H2O + *→ H2O* / / -0.79 / 

15a H* + CO2 + * → HCOO** 0.25 / -0.90  / 

a
 The kinetic parameters for reaction 15 were taken from Ref (Studt et al., 2015). 

Symbol * stands for active site on catalytic surface  



 

 309 

 310 

3. Methods 311 

 312 

3.1. Kinetic Monte Carlo 313 

 314 

Kinetic Monte Carlo (KMC) simulations were performed to study the evolution of a catalytic 315 

surface. We used the KMC software package Zacros 2.0 (Pineda and Stamatakis, 2017; 316 

Stamatakis and Vlachos, 2011a; Vignola et al., 2017), which uses a graph-theoretical 317 

implementation of KMC. We define a lattice structure, a reaction mechanism, an energetics 318 

model and reaction conditions. 319 

 320 

We used a hexagonal lattice with 800 reaction sites. The energetics and reaction mechanism 321 

were taken from Ref (Huš et al., 2017b) (see also Table 1). We carried out that the 322 

simulations at 200, 220, 240, 260, 280 and 300 °C and 20 bar, and at 1, 10, 20, 30 and 40 bar 323 

at 240 °C. The simulations were initialised with an empty lattice and run for 5 ∙ 10
6
 steps, 324 

which sufficed for reaching a steady state. We treated very fast steps as quasi-equilibrated. 325 

When they reached a quasi-steady state, their forward and reverse reaction rates were slowed 326 

down to escape the super basin (Stamatakis and Vlachos, 2011b). For each set of parameters, 327 

five simulations with different seeds were performed and averaged for better statics.  328 

 329 

 330 

3.2. Packing 331 

 332 



Beds of the PBR where prepared using the distinct element method (DEM) which simulates 333 

realistic packing of the PBR (de Moura Teixeira, 2013; Eppinger et al., 2011; Kuroki et al., 334 

2009; Tabib et al., 2013; Tsory et al., 2013; Vollmari et al., 2015; Wehinger et al., 2015; 335 

Zobel et al., 2012). The simulations were conducted with Blender (Blender Foundation), 336 

which is often used in scientific studies (Boccardo et al., 2015; Icardi et al., 2014; Pavlišič et 337 

al., 2018; van Gumster, 2015). It is based on a collection of code, contained in the Bullet 338 

Physics Library, used to manage the dynamics of rigid bodies by solving the Newton-Euler 339 

equations for both, the translational and rotational motions. 340 

 341 

First, five different geometries of catalyst particles were modelled. They were duplicated and 342 

scaled to mimic the particle size distribution observed experimentally under a scanning 343 

electron microscope (see Fig. 3 and Fig. 8 c). Secondly, randomly distributed and oriented 344 

particles in the container above the PBR were allowed to fall freely into the reactor under the 345 

gravitational pull. With this technique, we obtain a bed with the following characteristics: (i) 346 

height of the bed (hb) – 10 mm; (ii) ratio between the bed and particle diameter (Dcut/dp) – 5 347 

(iii) numbers of fillers – 1389 (iv) mean particle size – 200 m (v) porosity – 36.9 %. 348 

 349 



 350 

Fig. 3. The characteristics of virtual packing of PBR with arbitrary particles.  351 

  352 

3.3. The numerical set-up 353 

 354 

In the case of PBR, local phenomena are important to fully understand the chemistry and 355 

mass transport inside a chemical reactor (Janardhanan and Deutschmann, 2011). Therefore, it 356 

is very important that the computational domain (CD) used in CFD calculations resembles the 357 

reactor. However, for high ratios between the reactor diameter (Dr) and the particle diameter 358 

(dp), meshing the whole reactor would require an excessive number of computational cells, 359 

resulting in impractically long computational times. Previous studies have shown that it 360 

suffices to find a representative cut-segment of the bed (Dcut/dp > 4 for arbitrary particles) 361 

(Tabib et al., 2013).  362 

 363 

In this work, a cylindrical cut-segment (CCG) with the Dcut/dp ratio of 5 was used. As the 364 

concentration of species is highly nonlinear along the reactor length, the full height of the 365 



catalytic bed was included in the CCG (see Fig. 4 and the experimental section in the 366 

supplementary). For meshing, we applied the procedure from our previous work, which 367 

proved to be effective in modelling the grid-independent velocity field (Pavlišič et al., 2018). 368 

First, a coarse mesh was created. It was then gradually refined with the density profile of the 369 

nodes to be finer near the particles/cut-segment walls. Secondly, the bridges between the 370 

particles were additionally refined. The final CD consisted of 5 million elements with the 371 

average ratio between the particle diameter and the length of mesh cells near the particle 372 

surface being 70 (the thickness of the elements layer next to the surface was  3 m). 373 

 374 

Fig. 4. A cylindrical cut-segment of the catalytic reactor with the corresponding 375 

computational mesh. 376 

 377 

As we only simulated a CCG, the CFD simulation applies a slip wall boundary condition at 378 

the cut-segment surface (zero shear stress boundary condition) and a no-slip boundary 379 

condition for the catalytic wall. Since the PBR was operating in isothermal conditions, a fixed 380 

temperature was used for all boundaries. The other boundary conditions are, as follows: 381 

 382 



 Cut-segment walls: 383 

Zero mass flux for all species: 384 

 385 

 ∇𝑌𝑘|𝑐𝑢𝑡−𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 0 [9] 386 

 387 

 Catalytic wall: 388 

 389 

The mass flux of the individual species k is assumed equal to the formation rate due to 390 

the heterogeneous reaction occurring at the catalytic wall: 391 

 392 

ρ𝐷𝑘,𝑚(∇𝑌𝑘)|𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 = 𝑒𝑓𝑓𝑟̇𝑘 , [10] 393 

 394 

where eff is the ratio between the catalytic surface and the geometric area of the bed 395 

(cf. the next section for calculation details).  396 

 397 

 Inlet/outlet  398 

Usually, catalytic reactors require the Danckwerts condition for gas-phase species. In 399 

this work, however, a conditioning zone before and after the catalytic bed was added, 400 

which reduced the inlet boundary condition to fixed species mass fractions of the 401 

initial gas-phase composition. Zero gradients were used for all gas-species for outlet.  402 

 403 

Finding a numerical solution for reacting flows represents a challenge since the computational 404 

time increases with the number of chemical reactions. Moreover, the relevant ordinary 405 

differential equations (ODE) are usually too stiff for first- or second order numerical schemes 406 

used in partial differential equations (PDE) for transport phenomena. Therefore, fully-coupled 407 



methods considering all processes simultaneously can only be applied to small systems 408 

(Maestri and Cuoci, 2013). To overcome this limitation, segregated algorithms based on the 409 

operator-splitting methods were developed (Kee and Miller, 1978; Oran and Boris, 2001). 410 

With this method, the governing equations are split in sub-equations. Chemical reactions and 411 

non-stiff transport equations are thus treated separately.  412 

 413 

Herein, we extend the OpenFoam solver used for homogenous compressible reacting flows 414 

(reactingFoam) by adding heterogeneous catalytic reactions (the solver is called 415 

SurfaceReactingFoam). We were interested only in steady-state, therefore, PDEs were solved 416 

by the local time stepping (LTS) algorithm with the second order LimitedLinear scheme, 417 

while the ODEs were treated by the native Semi-Implicit Bulirsh-Stoer (SIBS) solver. At each 418 

iteration of a LTS, firstly momentum equation were solved (step 1 in Fig. 5), followed by 419 

calculation of new boundary conditions from Equation 10 by solving the quasi-equilibrium of 420 

the surface species coverages (step 2 in Fig. 5). For given fixed partial pressures, the 421 

adsorption and desorption rates were determined by solving the ODE of the surface reactions 422 

until a steady state was reached. In final stage transport equations were resolved (step 3 in 423 

Fig. 5), which close the loop of LTS iteration. The overall solution was considered to be at 424 

steady state when the residuals of the pressure and species concentration dropped for 7 and 5 425 

orders of magnitude, respectively.  426 

 427 



 428 

 429 

Fig. 5. The numerical algorithm adopted in the SurfaceReactingFoam framework. 430 

  431 

4. Results and Discussion 432 

 433 

4.1. Kinetic Monte Carlo simulations 434 

 435 

First, we performed kinetic Monte Carlo simulations to obtain insight into the behaviour of 436 

the catalyst surface. In Fig. 6, the surface coverage of a CuZn catalyst is shown at 240 °C and 437 

20 bar. Initially, only hydrogen adsorption takes place until the catalyst surface becomes 438 

almost saturated. After 10
-6

 s, the reaction begins to proceed as HCOO** is formed. A steady 439 

state is reached after 10
-2

 s. Note that only the most abundant surface species are shown, i.e. 440 

H*, HCOO**, CH3OH* and CH3O*. 441 

 442 
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 444 

Fig. 6. Time dependence of the surface coverage at 240 °C and 20 bar, as obtained from a 445 

KMC simulation.  446 

 447 

In Fig. 7, the temperature and pressure dependence of the surface coverage is shown. As the 448 

temperature increases, the coverages decrease. The effect is most pronounced for H* 449 

intermediate. The coverage of CH3O* can even slightly increase as it is a late intermediate, 450 

whose concentration is strongly dependent on the reaction rate. At low pressures (i.e. 1 bar), 451 

the coverage of all intermediates is low and increases with the pressure.  452 
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 455 



Fig. 7. The surface coverage as obtained from KMC at (left) 240 °C and (right) 40 bar. 456 

 457 

4.2. Isothermal CO2 hydrogenation on a Cu-based industrial catalyst 458 

 459 

Having proved that the proposed in-house developed solver SurfaceReactingFoam is stable 460 

and reliable (see supplementary), we extended its use to a more complex process of CO2 461 

hydrogenation to methanol on a Cu-based industrial catalyst. First, we fine-tuned the ab initio 462 

kinetic parameters (from DFT) with the single-pore approximation method. Then, we used the 463 

modified kinetic parameters in a realistic virtual PBR that mimics the reactor used in the 464 

experiments. With the aid of CFD, CO2 conversion and selectivity were calculated at various 465 

temperatures. The calculations were then compared with the experimental data. 466 

 467 

4.2.1. Catalyst characterization 468 

 469 

To obtain the necessary parameters for microkinetic modelling, a comprehensive 470 

characterisation of Cu-based industrial catalyst was performed. For crystallographic 471 

characterisation of its bulk and surface properties, XRD powder diffraction and XPS (X-ray 472 

photoelectron spectroscopy) were used. The results presented in Fig. 8 a-b show that bulk and 473 

the surface of the catalyst is predominantly composed of a CuO phase. XRD powder 474 

diffraction results are consistent with the specification of chemical composition showing that 475 

the ratio between CuO and ZnO is approximately 5:3 (since alumina phase was amorphous it 476 

could not be detected by XRD powder diffraction). From Rietveld analysis, the crystallite size 477 

of CuO and ZnO was calculated to be 6.6 and 4.7 nm, respectively. Morphological 478 

characterisation of the catalyst was performed with SEM (scanning electron microscopy) and 479 

TEM (transmission electron microscope). Images of TEM and SEM are presented in Fig. 8 c-480 



d, which were used to determine the particle shape and particle size distribution (see Section 481 

3.2 Packing). The number of catalytic active sites was determined with the temperature 482 

programmed desorption (H2-TPD) and a Brunauer–Emmett–Teller (BET) surface area 483 

measurement, as described in Ref (Huš et al., 2017a) (see Section 4.3.2 for results). 484 

Dispersion of copper was measured using dissociative N2O-chemisorption, as described in 485 

Ref (Dasireddy and Likozar, 2017) (see Section 4.3.2). 486 

 487 

 488 

Fig. 8. Catalyst characterization: a) XRD powder diffraction – black line – XRD powder 489 

diffraction pattern of the catalyst; green line – Rietveld analysis; red peaks – CuO phase; blue 490 

peaks – ZnO phase; b) XPS analysis – on the graph only Cu2p and Zn2p spectra are 491 

presented; c) SEM image of the catalyst; d) TEM image of the catalyst. 492 

 493 

4.2.2. Determination of the effective catalytic active sites  494 
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 495 

Most catalysts exhibit a rather complex structure. They may occur as dispersed particles on a 496 

flat surface or in a porous substrate. In the case of the Cu-based industrial catalyst for 497 

methanol production, the catalyst is synthesised by co-precipitation of hydroxylcarbonate 498 

precursors. This results in porous aggregates of strained Cu metal particles, stabilized and 499 

promoted by ZnO and Al2O3, respectively (Behrens et al., 2013; Girgsdies et al., 2005). The 500 

most convenient way to account for such complexity is to relate the catalytic surface area with 501 

the geometric surface area by scaling the intrinsic reaction rate at the fluid-solid interphase 502 

with two parameters (Janardhanan and Deutschmann, 2011). The first parameter is the ratio 503 

between the catalytic surface area and geometric surface area, designated by eff (see Eq. 10). 504 

Its value was determined by the experimentally derived catalytic area with the hydrogen 505 

temperature-programmed desorption and the calculated geometrical surface area of the 506 

catalytic particles from CD (see Table 2). Secondly, to include the effect of internal mass 507 

transfer resistance inside the porous particles, an effectiveness factor () was introduced based 508 

on the Thiele modulus (Hayes and Kolaczkowski, 1997; Papadias et al., 2000): 509 

  510 

𝐷𝑘,𝑚(∇𝑌𝑘)|𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐 = 
𝑒𝑓𝑓

𝑟̇𝑘 . [11] 511 

 512 

However, for a small Thiele modulus (< 0.1),  approaches unity. In practice this is feasible 513 

by reducing the catalyst particle size until the internal mas transfer resistance becomes 514 

negligible. Our experiments showed that particles with the size distribution between 160-250 515 

m are sufficient to supress the internal mas transfer resistance. Therefore, the simplification 516 

of the boundary condition from Eq. 10 is a good approximation for modelling reacting flows. 517 

  518 

Table 2: Particulate properties of the CAZ catalyst prepared via co-precipitation. 519 



 520 

Theoretical 

composition 

(Cu:Zn:Al) 

Surface area 

(m2/g) 

Cu metal 

dispersion (%) 

Cu metalic 

surface area 

(m2/g) 

H2 

chemisorbed 

(μmol/g) 

eff

50/30/20 96 28 48 31 6500 

 521 

 522 

4.2.3. Fine-tuning of the kinetic parameters by the single-pore approximation 523 

 524 

As previously mentioned, the DFT-calculated kinetic parameters can differ from those 525 

obtained by experiments. Therefore, fine-tuning of kinetic parameters is necessary for the 526 

CFD-modelled reacting flows to reflect experimental data. However, conducting a non-linear 527 

regression with CFD for the representative cut-segment of a catalytic PBR would be time 528 

consuming. On the other hand, simple continuum-based models, such as the plug flow reactor 529 

model (PFR), are fast enough but often too robust. Hence, we developed a single-pore 530 

approximation where a PBR is approximated as a monolith converter with square channels. 531 

The characteristic dimension of a single channel was calculated as: 532 

 533 

𝑎𝑐ℎ =
𝑆𝐺𝐸𝑂

4∙𝑉𝑉𝑂𝐼𝐷
 , [11] 534 

 535 

where ach is the width of the channel, SGEO is the geometric surface area of the catalyst and 536 

VVOID is the void volume of the bed. Additionally, the length of the channel (Lch) was tailored 537 

as to mimic the tortuous flow inside the PBR: 538 

 539 

𝐿𝑐ℎ = ℎ𝑏 ∙ 𝜏𝑃𝐵𝑅 , [12] 540 



  541 

where PBR is the tortuosity of the PBR, which was adapted from an unstructured sphere 542 

packing found in literature (Pavlišič et al., 2018). Finally, the inlet velocity (vch-inlet) of the 543 

channel was calculated as: 544 

  545 

vch-inlet=vf ∙
𝑆𝑐𝑟𝑜𝑠𝑠

𝐴𝑝𝑜𝑟𝑒𝑠
 . [12] 546 

 547 

In the equation reported above, vf is the superficial velocity of the PBR, Scut is the cross-548 

section area of the PBR and Apores is the cross-section area of all channels in a monolith. All 549 

boundary conditions needed for the CFD simulation of a single pore were adopted from the 550 

PBR (see next section 4.2.4). The characteristic inlet velocity, length and width of the channel 551 

were calculated from the parameters reported in Table 3. 552 

 553 

Table 3: The parameters needed for the calculation of single-pore dimensions and inlet 554 

superficial velocities.  555 

 556 

SGEO[mm2] porosity [%] hb [mm] PBR [/] Scross[mm2] Apores[mm2] 

200 36.9 10 1.2 0.95 0.29 

 557 

As depicted in the right hand side of Fig. 2, a minimum of three reaction steps are 558 

required for the description of adsorption/desorption heterogeneous catalytic reaction 559 

of CO2 hydrogenation. While Reactions B and C are responsible for selectivity, all three 560 

reactions contribute to the CO2 conversion. In theory, tailoring the kinetic parameters of 561 

Reaction B and C would be sufficient to reproduce the conversion and selectivity 562 

obtained by experiments. However, this could lead to un-physical fitted values of 563 



activation and reaction energies since conversion is also restricted by Reaction A. 564 

Therefore, three elementary reaction steps were chosen to be fine-tuned in this 565 

investigation.  566 

Finding suitable elementary reaction steps for Reactions B and C was straitght-forward 567 

since they must share the same intermediate. From Fig. 2, it is evident that this is CH2O* 568 

with corresponding reactions 7 and 10. On the contrary, Reaction A has four potential 569 

candidates (i.e. reaction 3, 4, 5, and 6). Preliminary results showed that the kinetic 570 

parameters obtained by DFT resulted in a lower CO2 conversion than seen in the 571 

experiments. Therefore, the elementary reaction step with the lowest equilibrium 572 

constants (i.e. reaction 4) was chosen due to the highest potential to push the overall 573 

reaction towards the products.  Next, for the single pore, the progressive Nelder-Mead 574 

algorithm of nonlinear regression was used. The algorithm was iteratively run (with the 575 

constrains reported in section 2.3) until the kinetic parameter converged within 1 % of 576 

the previous value (the results are summarised in Table 1).  577 

 578 

4.2.4. Temperature dependence of the CO2 conversion and selectivity 579 

 580 

In this section, the CFD results for the CO2 hydrogenation at various temperatures are 581 

presented. The computational domain consisted of a CCG with a diameter of 1 mm. The gas 582 

mixture of H2/CO2 (3:1) with the gas hourly space velocity (GHSV) of 12030 h
-1

 was used as 583 

the inlet boundary condition. The reactor was operating at isothermal conditions (200, 220, 584 

240, 260 and 280 
o
C) with the constant outlet pressure (20 bar). At the catalytic boundaries, a 585 

detailed microkinetic model was applied. In Fig. 9, the final conversion and selectivity for the 586 

production of methanol as obtained by CFD are reported. In general, the CFD model is in 587 

excellent agreement with the experimental data, showing only minor discrepancies between 588 



220-260 
o
C. Both, the CFD and the experimental data show a low CO2 conversion at low 589 

temperature, which gradually increases with temperature. At high temperatures, the 590 

conversion of CO2 asymptotically approaches the thermodynamic equilibrium. Conversely, 591 

the selectivity towards methanol is linearly dependent on the temperature, reaching 80 % at 592 

200 
o
C and falling to 10% at 280 

o
C.  593 

 594 
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Fig. 9. The temperature dependence of the CO2
 
conversion (top) and selectivity towards 596 

methanol (bottom) at 20 bars and 12,030 h
-1

 GHSV. 597 

 598 

Fig. 10. shows axial cross-sections of the PBR at 220 
o
C with the velocity field, CO2 599 

conversion, selectivity and the surface coverage of methanol. It is apparent that the random 600 

structure of packing resulted in a very distorted and non-uniform velocity field with 601 

preferential by-pass zones. These strong radial velocity variations result in a non-uniform 602 

residence time and could influence the surface reactivity and radial concentration profiles as a 603 

consequence (Maestri and Cuoci, 2013). 604 

 605 



However, the CO2 conversion profile shows no variation in radial directions, indicating that 606 

the overall reaction rates are limited by kinetics. This also justifies the assumption made in 607 

Eq. 2. Since high selectivity and low conversion resulted in nearly constant molar ratio of  608 

H2/CO2, the selectivity towards methanol shows only minor variations along the PBR. 609 

However, there is a large gradient in the methanol surface coverage at the inlet (which is also 610 

the case for other adsorbents). Nonetheless, it is quickly smoothed and the reactor operates 611 

almost at a constant surface coverage in the last half. In short, this means that even at low 612 

temperatures the conversion is restricted by the thermodynamic equilibrium, which is 613 

indicative of a PBR with recycle.  614 

 615 

 616 



 617 

Fig. 10. Cross-sections of the PBR at 220 
o
C and 20 bar with flow rate of 12,030 h

-1
 GHSV. 618 

From left: the velocity field, CO2 conversion, selectivity towards methanol and surface 619 

coverage of methanol.  620 

 621 

To get better insight into the large gradients of the surface species coverages, streamlines over 622 

a single catalytic particle at the reactor inlet were investigated (Fig. 11). The inlet velocity is 623 

significantly lower than that inside the catalytic bed. On average, the velocity inside the PBR 624 

is three times higher than the inlet velocity. Consequently, large gradients of the surface 625 

species coverages develop because of different resident times of the gaseous species. Special 626 

care is needed when designing cooling systems, especially if reaction is fast, as vast amounts 627 

of heat would be released at the beginning of the reactor. This finding is consistent with the 628 

reports of industrial methanol reactor, where a significant temperature jump was reported at 629 

the inlet (20
o
C) (Rahimpour et al., 2008; Rezaie et al., 2005). However, a further CFD 630 

analysis of the heat transfer is beyond the scope of this work, since experiments were 631 

conducted at isothermal condition.  632 

  633 



 634 

Fig. 11. The velocity field over a single catalytic filler at the reactor inlet (Conditions: 240
o
C, 635 

20 bar and 12,030 h
-1

 GHSV).  636 

 637 

4.2.5. Surface coverage of the most abundant reaction intermediates (MARI) 638 

 639 

To show the influence of intermediates on the overall methanol rate production, the surface 640 

coverage of the most abundant species is presented in Figs. 12-14. The results are generally 641 

consistent with the literature data, showing that formate (HCOO**) and methoxyl (CH3O*) 642 

are the most abundant intermediates (Kattel et al., 2017; Wu and Yang, 2017). This indicates 643 

that their production is the bottleneck for the overall reaction. In designing new catalysts, 644 

these are the most important species to be considered. Additionally, a substantial amount of 645 

water is adsorbed, which is known to act as an inhibitor in methanol synthesis (Saito and 646 



Murata, 2004). This problem could be surmounted with more hydrophobic catalysts, which 647 

should boost the overall rate of methanol production. 648 

 649 

As already shown, the surface species reach a quasi steady-state in the first 20 % of the 650 

reactor since the gas mixture quickly approaches the equilibrium (see Fig. 11). Hence, 651 

thermodynamic limitation is an important factor when considering the optimum operational 652 

condition and a reactor design for methanol synthesis.  653 
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Fig. 12. The axial length dependence of the MARI coverage at 240 
o
C and 20 bar.  656 

 657 

In Figs. 13-14, the temperature and pressure dependence of MARI is presented. In general, 658 

the CFD results are consisted with the KMC simulations, showing that HCOO** and CH3O* 659 

are the most abundant surface species. At low pressure (i.e. 1 bar), the surface coverage is low 660 

but it steeply increases with pressure (the same trend was observed with KMC). As expected, 661 

the surface coverage decreases with increasing temperature. However, a reverse trend was 662 

observed for HCOO** and CH3O* in comparison with KMC. While the surface concentration 663 

of HCOO** slightly increases, CH3O* seems to be strongly dependent on the CH3OH* 664 



reaction rate. As a consequence, the coverage decreases at higher temperatures. This 665 

discrepancy is ascribed to the set-up of the KMC simulations. Since the partial pressure of the 666 

reactants was kept constant in KMC, no distinct comparison could be drawn.  667 

 668 
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Fig. 13. The pressure dependence of MARI at 220
o
C.  672 
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Fig. 14. The temperature dependence of MARI at 20 bar. 675 

 676 

4.2.6. Pressure dependence of conversion and selectivity 677 

 678 

 679 

In this section, the pressure dependence of the conversion and selectivity towards methanol is 680 

investigated (Fig. 15). The selectivity towards methanol increases with pressure as a 681 

consequence of Le Chatelier's principle. The CFD results are consistent with the 682 

thermodynamic equilibrium calculated by STANJAN, which invokes minimizing the 683 

appropriate properties (e.g. Gibbs or Helmholtz free energy) or maximizing the entropy of the 684 

user-supplied gas mixture(“Chemical Equilibrium Calculator,” n.d.). 685 

Looking at the pressure dependence, the CO2 conversion follows a parabolic relation and 686 

reaches the maximum conversion at 10 bar upon attaining the equilibrium. This is the 687 

consequence of the constant GHSV: i.e. the reactor length is inadequate to reach a full 688 

thermodynamic conversion at either high linear velocities due to low pressure or high 689 

concentrations due to high pressure.  690 
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Fig. 15. The pressure dependence of the CO2 conversion and the selectivity towards methanol 693 

at 240 
o
C and 12,030 h

-1
 GHSV.  694 

 695 

5. Conclusions 696 

 697 

In-house solver was developed to solve steady-state heterogeneous reacting flows inside a 698 

PBR with complex geometry. The solver SurfaceReactingFoam was designed to couple the 699 

first-principles kinetics of catalytic chemical reactions with the macroscale Navier-Stokes 700 

equations. The proposed solver was implemented within the OpenFoam framework and 701 

benchmarked against the existing code (CatalyticFOAM) with a satisfactory accuracy. 702 

 703 

Kinetic Monte Carlo (KMC) simulations were used to show how the catalytic surface 704 

coverages change with time and conditions on a microscopic scale. We predict H*, HCOO** 705 

and CH3O* intermediates to be the most abundant surface species. A significant temperature 706 

and pressure dependence of the surface species composition was discovered. KMC allowed us 707 



to take snapshots and resolve the surface coverage with atomistic detail, which is impossible 708 

to achieve with a mean-field approach. 709 

 710 

Additionally, a new approach for nonlinear regression of kinetic parameters with the single-711 

pore approximation of the PBR was suggested. First, the most probable reaction route was 712 

established from the DFT-calculated potential energy surface, KMC and the transition state 713 

theory. A minimum set of kinetic parameters with the highest influence on the conversion and 714 

selectivity was chosen with aid of KMC and DFT. In next step they were subjected to further 715 

optimization with a two-step minimization procedure. The proposed algorithm combines a 716 

minimum set of experiments with a rather small interference of the kinetic parameters 717 

obtained by first-principle calculations, which results in a fine-tuned reaction scheme that 718 

reflects the experimental data. 719 

 720 

Finally, CFD with a detailed first-principle mean-field microkinetic model was conducted for 721 

the CO2 hydrogenation on Cu-based (industrial) catalysts. The modelled conversion and 722 

selectivity were consistent with the experiments, which is a big step towards full virtual 723 

multiscale modelling of industrial processes. It ranges from catalyst design to the optimisation 724 

of process parameters. The CFD coupled with a mean-field first-principle microkinetic model 725 

proved as a promising technique for optimizing catalytic reactors. It leads to the final stage of 726 

hierarchical modelling where simpler continuous models (such as pseudo-homogeneous PFR) 727 

will be coupled with CFD in order to reduce computational time. In this step CFD will 728 

provide a tool to calculate empirical parameters which are mandatory for such simplification. 729 

All in all, using virtual optimization of catalyst properties, operational conditions and reactor 730 

design, costly experimental work can be avoided. 731 

 732 
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