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Abstract—This paper reports a technical demonstration show-
ing the use of the ONOS SDN controller for disaggregated
transport networks, summarizing the latest developments and
results within the Open Networking Foundation (ONF) Open
Disaggregated Transport Networks (ODTN) project.

The demonstration mainly covers the dynamic provisioning
of data connectivity services and advanced automatic failure
recovery, both at the control and data plane levels. For the
provisioning, we demonstrate the usage of open and standard
protocols and interfaces. For the recovery part, we first demon-
strate, covering the control plane, how ONOS can behave as a
logically centralized controller while using multiple coordinated
instances for robustness. We show how the different devices
remain under control even in the event of a failure of one of such
instances, relying on the ATOMIX framework and the dynamic
real-time negotiation of device mastership. For the data plane,
we demonstrate the capabilities of the controller to perform
automatic restoration of optical services.

Index Terms—Disaggregated Optical Networks, Software De-
fined Networking (SDN), Control Plane Resilience, Open and
Disaggregated Transport Networks (ODTN), Open Networking
Foundation (ONF), Open Network Operating System (ONOS).

I. INTRODUCTION

D ISAGGREGATION and modularization are two key
concepts in the evolution of future optical networks.

A disaggregated model is based on white boxes with open
and standard Application Programming Interfaces (APIs), con-
trolled by a third party management entity, preferably open-
source. Where, different optical network elements (such as
Re-configurable Optical Add-Drop Multiplexers or ROADMs,
transponders, line amplifiers, etc.) can be provided by different
vendors [1]. Thus, disaggregation breaks the vendor lock-
in dependencies enabling more flexible, re-configurable and
elastic network architectures and deployments.

A key component in these networks is the optical domain
controller, which is responsible for control plane functions
and network management, such as discovering the topology
through multiple protocols and device-specific models, pro-
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viding service establishment, and continuously manage and
monitor the network [2].

In this scenario, besides proprietary controllers owned
by device vendors, several open-source initiatives emerged
to implement Software Defined Networking (SDN) con-
trollers supporting disaggregated optical networks. Among
them, the Open Networking Foundation (ONF) is extending
the functionalities of their Open Network Operating System
(ONOS) [4], [8] trough the on-going activities of the Open and
Disaggregated Transport Networks (ODTN) working group.

It is worth noting that, with the adoption of SDN principles,
the overall disaggregated optical network architecture needs
to take into account several kinds of failures, both in the data
plane (e.g., node failures, fiber cuts and device malfunction),
and in the control plane (e.g. the failure of the controller).
The demonstration reported in this paper aims at showing how
recent developments in the scope of control of disaggregated
optical networks aim at addressing these reliability require-
ments.

This paper extends the work in [3], in which we demon-
strate an optical network deployment discovered, managed and
controlled by ONOS. Specifically, with respect to [3], this
paper provides further details on the implementation of ONOS
clustering technology, on the network topology initialization
and device feature discovery process, and on the procedures
used by the controller to configure an end-to-end optical
connection (i.e., lightpath). Moreover, this paper considers
two additional failure scenarios on the data plane (i.e., loss
of configuration, and device failure). Finally a more detailed
analysis of the control plane failure is also performed.

Other previous work [4]–[7] includes validation on real
hardware. However, the transponders utilized in [4]–[6] are
not commercial products but experimental hardware developed
for research purposes. Whereas, [5]–[7] do not consider failure
scenarios ans the work in [4] only considers, on the data plane,
the node failure scenario.

In the demonstration reported in this paper ONOS first
discovers the equipment through the NETCONF [9] protocol
and the corresponding device YANG [10] models. Then,
ONOS provisions a bidirectional lightpath, after receiving a
request via its Northbound API.

Once the lightpath is established, the first goal of the demo
is to demonstrate the robustness of the ONOS controller.
Indeed, the typical ONOS deployment consists of a number of
instances; during normal behaviour the instances collaborate
operating in a continuously synchronized manner sharing the
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different operations and devices of the network thus increasing
the system scalability. In case of failure of one instance the
remaining instances take over the control of the underlying
infrastructure. This is one of the main differentiating factors
of the ONOS controller framework with respect to other
SDN controllers. ONOS behaves as a logically centralized
controller (thus enabling a seamless implementation of an
application ecosystem, as expected), while internally managing
a distributed and synchronized set of instances.

The second goal of the demonstration it to show the oper-
ations automatically performed to react to data-plane failures.
In particular, the demonstration firstly simulates a fiber-cut
through a port down command. Thus, the ONOS controller
automatically re-provisions the path across the network to
account for the failure. The re-provisioning, if a protection
path was not previously set-up, takes 500 ms for ONOS to
compute the new configuration, and 900 ms for the devices to
tune the lasers on the new paths, so a total of 1.4 seconds
of traffic disruption for a non protected path is expected.
The demo then simulates a device malfunction by erasing
existing ROADM media channel configuration directly from
the network element. In this case the ONOS controller detects
the misalignment and automatically re-configure the device
with its correct configuration. Finally, the demo simulates
a node failure (i.e., the connection between the controller
and a device is interrupted); In this case, lightpaths passing
through the failed device are re-routed, while the controller
continuously tries to re-establish the connectivity with the lost
device.

The paper is organized as follows. First, Sec. II provides
an update on recent developments of the ODTN working
group. Then, Sec. III details the data plane deployment used
in the demonstration. Sec. IV presents the SDN-based control
plane architecture, highlighting the decomposition into logical
instances. The procedures adopted by the SDN Controller to
dynamically obtain the network topology and to provision
connection services are respectively described in Sec. V and
Sec.VI. Then, Sec. VIII and Sec. VII respectively report
data plane and control plane recovery procedures, providing
detailed description of the steps adopted by the controller.
Finally, Sec. IX draws the conclusion.

II. RECENT ODTN ACTIVITIES

The ODTN working group was created at the ONF in 2018
for extending ONOS to support and monitor disaggregated
optical networks. A detailed report of the ODTN activities up
to summer 2019 can be found in [4]. This section summarizes
the most recent ODTN activity. In particular, focus is placed
on handling failures and achieving resiliency as described in
this paper. New features were also developed, among all we
integrated Bit Error Rate (BER) retrieval capabilities from
OpenConfig Transponders. Pre- and post- BER Forward Error
Correction (FEC) is collected and then exposed through REST
APIs, Command Line Interface (CLI) and User Interface (UI).
Integrating this parameter allows a more in-depth look at
optical link state, enabling ease of diagnostics and analysis.
BER is no available over every OpenConfig transponder.

The ODTN project also dedicates effort in expanding the
pool of optical equipment that it can control and manage. For
OpenConfig based transponders integration and testing was
done with Fujitsu 1FINITY T100 [26] and Infinera Groove
G30s [25]; for ROADMs, drivers were included in ONOS to
control CzechLight equipment [23], as shown at TIP summit
2019. To allow a full end-to-end open source stack on top
of white box hardware for packet-optical transponders the
Stratum [24] operating system from ONF has been extended to
support optical configuration through OpenConfig and gNMI.
Such an integration included also drivers in ONOS. Thanks
to the described effort all of the capabilities discussed in this
paper are offered now with Stratum over the Edgecore Cassini
packet-optical transponder.

ODTN has also been extended to be capable of leveraging
the GNPy optical simulation and planning tool [22] for path
computation across the optical domain. Through the use of
GNPy ODTN is now aware of different optical impairments,
such as fiber loss or device gain capabilities. The path is
selected among the possible ones by using the GSNR value:
the path with highest value, thus lowest signal interference, is
chosen and configured in the network.

III. DATA PLANE DEPLOYMENT

The network used in the demonstration is comprised of
two CASSINI optical transponders and two Reconfigurable
Optical Add/Drop Multiplexers (ROADMs). The transponders
are modelled as OpenConfig terminal devices [12] and con-
trolled by specific drivers within ONOS that adheres to the
OpenConfig YANG model definition [21]. The two transpon-
der are then connected to the ROADMs which in turn are
connected through redundant links to support data plane fail-
over. As depicted in Fig. 1, the transponders are two Edgecore
AS7716-24SC white box devices equipped with Lumentum
CFP2-ACO Coherent Optical Transceivers on the optical side.
The transponders, through OCNos from IPInfusion, expose a
NETCONF API that models their capabilities and data through
the OpenConfig YANG models. The Lumentum ACO card is
integrated through a driver with the Transponder Abstraction
Interface (TAI) [13] which exposes a high level set of APIs
to configure transceiver capabilities. The transponders client
ports are attached to emulated end-hosts to generate traffic
and measure network state.

The ROADMs are Lumentum ROADM-20 white boxes that
expose a NETCONF API described by a not-standard YANG
model provided with the device vendor [6], so a specific
ONOS drivers that map high level applications commands to
operations on the device have been implemented, and is now
part of the official ONOS distribution.

IV. CONTROL PLANE ARCHITECTURE

The ONOS SDN Controller is deployed in a scenario with 3
instances, as illustrated in Fig. 2. Every instance runs identical
java code in a Java Virtual Machine (JVM) inside its own
Docker container. A group of ONOS instances is known
as an ONOS cluster. The cluster shares state through a 3
instance ATOMIX partition set [14]. This ATOMIX cluster is
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Fig. 1. CASSINI Edge-core AS7716-24SC optical transponder equipped with
Lumentum CFP2-ACO transceivers.

Fig. 2. Control Plane Architecture deploying an ONOS cluster composed of
three instances

again deployed in a 3 instance scenario with 3 other Docker
containers running a JVM. Both ONOS and ATOMIX are
deployed with an odd number of instances to avoid the split
brain problem of distributed systems [15].

The described approach results in 6 docker containers for
the total deployment. For this demonstration, all the docker
containers run over a bare metal server with an 10-core x86
CPU and 64GB memory capability. The server is connected
through a separate management network to the network de-
vices. In real deployments a number of servers or a Kubernetes
cloud native environment can be used to host each required
docker container to avoid single points of failure.

A. Atomix distributed in memory database

In order to resist in case of control plane failure without loss
of data ONOS leverages Atomix, a distributed, persistent, in
memory database based on the RAFT [16] consensus protocol.
Atomix is a fully featured framework for building fault-

tolerant distributed systems. Combining ZooKeeper’s consis-
tency with Hazelcast’s usability and performance, Atomix uses
a set of custom communication APIs, a shared Raft cluster,
and a multi-primary protocol to provide a series of high-
level primitives for building distributed systems and to solve
many common distributed systems problems including cluster
management, asynchronous messaging, group membership,
leader election, distributed concurrency control, partitioning,
and replication. Atomix abstracts the distributed aspect by
exposing a series of Java APIs very keen to the Collec-
tion framework, such as EventuallyConsistentMap,
ConsistentMap, AtomicCounter and others. Such
easy to use APIs are at the foundation of each subsystem in
ONOS.

B. ONOS Distributed stores

All information inside ONOS is saved in distributed stores.
Depending on the requirements of a service, the algorithm
used to store and distribute data between nodes can have
different characteristics (e.g. strongly consistent, eventually
consistent, etc.). This is made possible by Atomix exposing
Java Collections having such characteristics thus allowing
each service’s store to implement the appropriate distribution
mechanism according to it’s data. Historically, the store for
Mastership management used Hazelcast’s distributed struc-
tures as a strongly consistent back-end. Since ONOS 1.4 the
Atomix framework is used instead. The stores for network
state such as Devices, Links, and Hosts uses an optimistic
replication technique complemented by a background gossip
protocol to ensure eventual consistency. Simply put, the same
subsystems of two different nodes synchronize directly with
one another through the Store. The Store only synchronizes
the states of the subsystem that it is part of. For example,
a DeviceStore only knows about the state of devices, and
does not have any knowledge of how host or link information
is tracked. A different approach is instead taken with Flow
Rules and configuration. Since these are edicts that must be
enforced on the network a strongly consistent storage through
Atomix is used, demanding the nodes to have knowledge of the
state before any operation happens towards the devices, thus
allowing controller nodes to fail at any time with no disruption.

Upon ONOS saving any information in the stores, the
underlying Atomix receives it and shares it among it’s par-
titions, over a single TCP connection in port 9876, ensuring
consistency. In the case targeted in our demonstration, devices,
ports, links, intents and flows each have their corresponding
distributed stores. Thus, if a failure affecting an ONOS in-
stance occurs, the information being shared through Atomix
is not lost, since it is shared and can still be read by the
remaining ONOS instances. When a new instance re-connects
to the ONOS cluster, it can retrieve all data from the distributed
stores in order to synchronize state.

V. NETWORK TOPOLOGY INITIALIZATION AND
EQUIPMENT DISCOVERY

In our particular SDN deployment, the topology informa-
tion, involving devices’ ports and capabilities (transceivers,
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{

  "devices": {

    "netconf:10.10.255.2:2022": {

      "netconf": {

        "ip": "10.10.255.2", "port": "2022",

        "username": "admin", "password": "admin"

      },

      "basic": {

         "name": "TxRx1", "driver": "terminal-device"

      }

    },

    "netconf:10.10.255.3:2022": {

      "netconf": {

        "ip": "10.10.255.3", "port": "2022",

        "username": "admin", "password": "admin"

      },

      "basic": {

         "name": "TxRx2", "driver": "terminal-device"

      }

    }

  }

}

{

  "links": {

    "netconf:10.10.255.2:2022/10101-netconf:10.10.255.3:2022/10102": {

      "basic" : {

        "type": "OPTICAL", "bidirectional": true, "metric": 1

      }

    },

    "netconf:10.10.255.3:2022/10102-netconf:10.10.255.2:2022/10101": {

      "basic" : {

        "type": "OPTICAL", "bidirectional": true, "metric": 1

      }

    }

  }

}

Fig. 3. JSON payload in the REST request to initialize the network topology
vision at the ONOS controller, it includes two devices (transponders) and the
two connecting links.

physical-channels, identifiers, etc.) as well as links are dis-
covered through OpenConfig interfaces based on NETCONF
protocol.

ONOS receives from an external Operation Support Systems
(OSS) or Business Support Systems (BSS) a Javascript Object
Notation (JSON) encoded request containing the endpoint
information of the different devices and the drivers (which de-
fines the protocol/management interface to be used to discover
the devices) to use for such devices. Fig. 3 shows an example
JSON used to initialize the network topology vision of the
ONOS controller including two devices and the connecting
links.

Upon receiving the device endpoint information ONOS es-
tablishes connection and after a successful discovery (typically
involving exchanges with the devices retrieving topological in-
formation), topological elements are stored in different ONOS
stores:

• ONOS topology store the topology graph consisting on
edge and vertices.

• ONOS device store for device and ports information, also
available media channels (optical wavelengths) are stored
here.

• ONOS Dynamic Configuration Store (DCS), which can
be later queried using a diversity of north-bound proto-
cols, e.g TAPI.

The DCS storage is structured following pre-configured data
models. In particular, ONF Transport API (TAPI) [17] data
models, so TAPI data nodes such as Links, Nodes, Node-
Edge-Points and Service Interface Points (SIPs) are exposed

to applications and high level API consumers such as network
orchestrators or operators’ OSS and BSS, through a REST-
CONF [18] interface. Other than retrieving SIPs, such interface
may also be used to learn about the network topology and issue
connectivity service requests, which trigger the establishment
of data plane services (ITU-T fixed-grid Optical Channels
and/or flexi-grid network media channels.)

A. Detailed Provisioning

Consider the provisioning of a service, involving two
transponders and two Lumentum ROADMs. Initially, the de-
vices are provisioned in the ONOS SDN controller, by using
a dedicated REST interface (i.e., the interface to be used by
external OSS/BSS systems). The devices are thus declared,
and ready to be controlled by the SDN Controller. The first
part involves the creation of the NETCONF session:

16:23:14.606 INFO [NetconfControllerImpl] Creating NETCONF session to netconf
:10.100.100.93:830 with apache-mina

16:23:14.606 INFO [NetconfControllerImpl] Creating NETCONF session to netconf
:10.100.100.94:830 with apache-mina

16:23:14.611 INFO [NetconfControllerImpl] Creating NETCONF session to netconf
:10.100.100.2:830 with apache-mina

16:23:14.611 INFO [NetconfControllerImpl] Creating NETCONF session to netconf
:10.100.100.3:830 with apache-mina

16:23:14.617 INFO [NetconfSessionMinaImpl] Connecting to netconf:admin@10
.100.100.3:830 with timeouts C:5, R:5, I:300

16:23:14.620 INFO [NetconfSessionMinaImpl] Connecting to netconf:superuser@10
.100.100.93:830 with timeouts C:5, R:5, I:300

16:23:14.620 INFO [NetconfSessionMinaImpl] Connecting to netconf:superuser@10
.100.100.94:830 with timeouts C:5, R:5, I:300

16:23:14.620 INFO [NetconfSessionMinaImpl] Connecting to netconf:admin@10
.100.100.2:830 with timeouts C:5, R:5, I:300

16:23:14.621 INFO [NetconfSessionMinaImpl] Creating NETCONF session to netconf
:10.100.100.94:830

16:23:14.621 INFO [NetconfSessionMinaImpl] Creating NETCONF session to netconf
:10.100.100.2:830

16:23:14.621 INFO [NetconfSessionMinaImpl] Creating NETCONF session to netconf
:10.100.100.3:830

16:23:14.621 INFO [NetconfSessionMinaImpl] Creating NETCONF session to netconf
:10.100.100.93:830

After the session is established, the SDN Controller can
retrieve the details of the devices, notably, device attributes,
and data nodes like the vendor, serial number, hardware and
software vendors, etc. At this stage the devices are added to
the DCS as mentioned above.

16:23:14.918 INFO [ClientLineTerminalDeviceDiscovery] Device retrieved details
16:23:14.919 INFO [ClientLineTerminalDeviceDiscovery] VENDOR SSSA-CNIT
16:23:14.920 INFO [ClientLineTerminalDeviceDiscovery] HWVERSION 1.0.0
16:23:14.920 INFO [ClientLineTerminalDeviceDiscovery] SWVERSION 1.0.0
16:23:14.921 INFO [ClientLineTerminalDeviceDiscovery] SERIAL 610610
16:23:14.921 INFO [ClientLineTerminalDeviceDiscovery] CHASSISID 128
16:23:14.924 INFO [DeviceManager] Local role is MASTER for netconf:10.100.100.3:830
16:23:14.928 INFO [DeviceManager] Device netconf:10.100.100.3:830 connected
16:23:14.959 INFO [TopologyManager] Topology DefaultTopology{time=1319599588167402,

creationTime=1572967394955, computeCost=531659, clusters=1, devices=1, links
=0} changed

16:23:14.988 INFO [TopologyManager] Topology DefaultTopology{time=1319599615296802,
creationTime=1572967394982, computeCost=136662, clusters=1, devices=1, links
=0} changed

16:23:15.028 INFO [ClientLineTerminalDeviceDiscovery] Device retrieved details
16:23:15.029 INFO [ClientLineTerminalDeviceDiscovery] VENDOR SSSA-CNIT
16:23:15.030 INFO [ClientLineTerminalDeviceDiscovery] HWVERSION 1.0.0
16:23:15.030 INFO [ClientLineTerminalDeviceDiscovery] SWVERSION 1.0.0
16:23:15.031 INFO [ClientLineTerminalDeviceDiscovery] SERIAL 610610
16:23:15.031 INFO [ClientLineTerminalDeviceDiscovery] CHASSISID 128
16:23:15.035 INFO [DeviceManager] Local role is MASTER for netconf:10.100.100.2:830
16:23:15.036 INFO [DeviceManager] Device netconf:10.100.100.2:830 connected

After the initial discovery, OpenConfig and Lumentum
ONOS drivers allow the discovery of ports, and port
types, which are later modelled in ONOS internal topol-
ogy model and can be retrieved via a TAPI interface.
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16:23:15.054 INFO [TopologyManager] Topology DefaultTopology{time=1319599684355829,
creationTime=1572967395051, computeCost=108143, clusters=2, devices=2, links
=0} changed

16:23:15.171 INFO [ClientLineTerminalDeviceDiscovery] Parsing Component port-10101
type oc-platform-types:PORT

16:23:15.176 INFO [ClientLineTerminalDeviceDiscovery] Parsing Component port-10102
type oc-platform-types:PORT

16:23:15.177 INFO [ClientLineTerminalDeviceDiscovery] Parsing Component port-10103
type oc-platform-types:PORT

(snip)
16:23:15.220 INFO [ClientLineTerminalDeviceDiscovery] Parsing Component port-10138

type oc-platform-types:PORT
16:23:15.221 INFO [ClientLineTerminalDeviceDiscovery] Parsing Component port-10139

type oc-platform-types:PORT
16:23:15.223 INFO [ClientLineTerminalDeviceDiscovery] Parsing Component port-10140

type oc-platform-types:PORT
16:23:15.604 INFO [LumentumNetconfRoadmDiscovery] Lumentum ROADM20 - discovered

details:
16:23:15.605 INFO [LumentumNetconfRoadmDiscovery] TYPE ROADM
16:23:15.606 INFO [LumentumNetconfRoadmDiscovery] VENDOR Lumentum:ROADM with Twin

1X20 WSS
16:23:15.606 INFO [LumentumNetconfRoadmDiscovery] HWVERSION 100004
16:23:15.606 INFO [LumentumNetconfRoadmDiscovery] SWVERSION dcian_R2.1.4_136
16:23:15.606 INFO [LumentumNetconfRoadmDiscovery] SERIAL WBDF17900071
16:23:15.607 INFO [LumentumNetconfRoadmDiscovery] CHASSISID 1

Parameters of the device are next retrieved, like port types,
tunability restrictions, operational state, etc. The following
example shows retrieval of a ROADM port.
16:23:16.295 INFO [LumentumNetconfRoadmDiscovery] Lumentum NETCONF - retrieved port

3001,true,FIBER,0,{portName=Optical Line, entity-description=Optical Line,
operational-state=normal, output-power=-50.00, optical-los-hysteresis=3.00,
input-power=-50.00, outvoa-target-attenuation=0.00, outvoa-actual-attenuation
=17.60, optical-los-threshold=-42.00, optical-loo-hysteresis=3.00, input-low-
degrade-threshold=-50.00, input-low-degrade-hysteresis=3.00, optical-loo-
threshold=-50.00}

This step concludes the equipment discovery phase (including
5 devices) for which the ONOS controller takes about 1.7
seconds.

VI. OPTICAL CONNECTIVITY ESTABLISHMENT

The demo simulates an OSS/BSS that issues a connectivity
request through TAPI to ONOS, to obtain end to end con-
nectivity between two client-side ports of the transponders.
ONOS processes the request, translates the received request
into intents, stores into the distributed intent subsystem store
and performs path computation and resource allocation (i.e.,
wavelength assignment), resulting in specific configurations of
Transponders and ROADMs.

Such configurations are stored in the ONOS system in the
form of flow rules. For example, for the transceivers optical
ports these rules convey the DWDM grid, channel’s central
frequency and port number, as well as information required to
configure a cross-connection between the client side and line
side ports. Each device has an ONOS driver that maps flow
rules into actual device configuration based on the underlying
device data model (i.e., edit-config NETCONF messages are
generated with the proper XML code). In particular, for the
transponders, OpenConfig constructs are created and sent
down to the device through the pre-established NETCONF
connection.

As defined by the OpenConfig model, the line-side to client-
side cross-connection is installed through a logical channel
association, while an optical channel construct with frequency
and power for the specific transceiver is to configure the
Lumentum ACO card. Within the ONOS intent framework
the configuration of the client side and of the line side
are respectively mapped into an OpticalCircuit intent and an
OpticalConnectivity intent [4].

After the configuration of both transponders and both
ROADMs we show that the two hosts connected to the client-
side ports of the Transponders can reach each other and
exchange traffic.

Fig. 4. Wireshark capture of a section of exchanges between the ONOS
SDN controller and the NETCONF devices for the provisioning of an optical
connection.

A. Detailed Discovery

At the provisioning stage, an OpticalConnectivityIntent has
been pushed between the two CASSINI transponder passing
thorough the Lumentum ROADM. This is mapped into a Flow
Rule that uses Lumentum API to provision the cross-connect,
as well as the OpenConfig devices. In particular note the
selected OchSignal −35 × 50 GHz, which is translated into
the 191.35 THz wavelength.
16:25:15.457 INFO [LumentumFlowRule] Lumentum device, FlowRule coming from

OpticalConnectivityIntentCompiler
16:25:15.467 INFO [TerminalDeviceFlowRule] TerminalFlowRule built with name

LineIngress-LinePort-10101-ochSig-Frequency{frequency=191350000000000Hz}
16:25:15.468 INFO [TerminalDeviceFlowRule] TerminalFlowRule built with name

LineEgress-LinePort-10101-ochSig-Frequency{frequency=191350000000000Hz}
16:25:15.469 INFO [ClientLineTerminalDeviceFlowRuleProgrammable] Sending LINE

FlowRule to device netconf:10.100.100.3:830 LINE port 10101, frequency
Frequency{frequency=191350000000000Hz}

16:25:15.469 INFO [ClientLineTerminalDeviceFlowRuleProgrammable] Sending LINE
FlowRule to device netconf:10.100.100.2:830 LINE port 10101, frequency
Frequency{frequency=191350000000000Hz}

16:25:15.476 INFO [LumentumNetconfRoadmFlowRuleProgrammable] Lumentum ROADM20 - RPC
add-connection sent to device netconf:10.10.10.30:830

16:25:15.518 INFO [ClientLineTerminalDeviceFlowRuleProgrammable] OpenConfig added
flowrule TerminalDeviceFlowRule{id=bf000012c33c7d, deviceId=netconf
:10.100.100.3:830, priority=100, selector=[IN_PORT:10101, OCH_SIGID:OchSignal
{-35 x 50.00GHz +/- 25.00GHz}, OCH_SIGTYPE:FIXED_GRID], treatment=
DefaultTrafficTreatment{immediate=[OUTPUT:10101], deferred=[], transition=
None, meter=[], cleared=false, StatTrigger=null, metadata=null}, tableId=0,
created=1572967515459}

16:25:15.457 INFO [ClientLineTerminalDeviceFlowRuleProgrammable] Optical Channel
Frequency <components xmlns=thttp://openconfig.net/yang/platform’><component
nc:operation=’merge’><name>oc1/0</name><oc-opt-term:optical-channel <xmlns:oc
-opt-term=’http://openconfig.net/yang/terminal-device’></oc-opt-term:config><
oc-opt-term:frequency> 191650000 </oc-opt-term:frequency> </oc-opt-term:
config> </oc-opt-term:optical-channel></component></components>

16:25:15.457 INFO [ClientLineTerminalDeviceFlowRuleProgrammable] Optical Channel
Frequency <components xmlns=’http://openconfig.net/yang/platform’><component
nc:operation=’merge’><name>oc1/0</name><oc-opt-term:optical-channel <xmlns:oc
-opt-term=’http://openconfig.net/yang/terminal-device’></oc-opt-term:config><
oc-opt-term:frequency> 191650000 </oc-opt-term:frequency> </oc-opt-term:
config> </oc-opt-term:optical-channel></component></components>

16:25:15.525 INFO [ClientLineTerminalDeviceFlowRuleProgrammable] OpenConfig added
flowrule TerminalDeviceFlowRule{id=bf0000f9652c51, deviceId=netconf
:10.100.100.2:830, priority=100, selector=[IN_PORT:10101], treatment=
DefaultTrafficTreatment{immediate=[OCH:OchSignal{-35 x 50.00GHz +/- 25.00GHz
}, OUTPUT:10101], deferred=[], transition=None, meter=[], cleared=false,
StatTrigger=null, metadata=null}, tableId=0, created=1572967515455}

16:25:16.754 INFO [LumentumNetconfRoadmFlowRuleProgrammable] Device netconf
:10.10.10.30:830 applyFlowRules added 1

For this step, i.e. forwarding of computed configurations to
the devices the ONOS controller takes about 1.2 seconds.

Thus adding the devices to the ONOS controller allowing
ONOS to discover the devices details, requesting a service,
configuring the devices based on the computed parameters
and then removing the connection takes approximately 3
seconds. Fig. 4 shows a (small) part of the involved exchanged
messages. A more detailed analysis of the time contributions
involved in the connection establishment process can be found
in [4].

One can also remove the given configuration across the
whole network. The following traces shows the value for the
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configuration being set to 0 and then removed by ONOS on the
CASSINI devices and the same happening in the Lumentum
ROADM.

Drop in CASSINI
16:25:15.457 INFO [CassiniIFlowRuleProgrammable] Optical Channel Frequency <

components xmlns=thttp://openconfig.net/yang/platform’><component nc:
operation=’merge’><name>oc1/0</name><oc-opt-term:optical-channel <xmlns:oc-
opt-term=’http://openconfig.net/yang/terminal-device’></oc-opt-term:config><
oc-opt-term:frequency>0</oc-opt-term:frequency> </oc-opt-term:config> </oc-
opt-term:optical-channel></component></components>

16:25:15.457 INFO [CassiniFlowRuleProgrammable] Optical Channel Frequency <
components xmlns=’http://openconfig.net/yang/platform’><component nc:
operation=’merge’><name>oc1/0</name><oc-opt-term:optical-channel <xmlns:oc-
opt-term=’http://openconfig.net/yang/terminal-device’></oc-opt-term:config><
oc-opt-term:frequency>0</oc-opt-term:frequency> </oc-opt-term:config> </oc-
opt-term:optical-channel></component></components>

16:25:15.457 INFO [CassiniFlowRuleProgrammable] OPENCONFIG netconf
:10.100.100.94:830: removedFlowRules removed [2]

16:25:15.457 INFO [CassiniFlowRuleProgrammable] OPENCONFIG netconf
:10.100.100.93:830: removedFlowRules removed [2]

B. Launch Power Configuration

During this demo we have also shown ONOS being capable
of configuring launch power at each hop of the network,
thus ensuring proper OSNR for the end to end path to be
established. Currently the power calculation in done outside
of ONOS and is manually inserted for each port in a vendor
independent way through the PowerConfig behaviour.

Such behavior abstracts the underlying models. The follow-
ing trace shows ONOS configuring a power at -6 dBs on the
line port of the CASSINI through Openconfig.

2019-09-13715:48:38,650 INFO qtp1054806295-7361 [CassiniTerminalDevicePowerConfig]
246 - org.onosproject.onos-drivers-odtn-driver - 2.3.0.SNAPSHOT I Setting per
<rpc xmlns--urn:ietf:params:xml:ns:netconf:base:1.0"><edit-confip<target><

candidate/></target><config><ccmponents xmlns-"http://openconfig.net/yang/
platform"><component><none>oc1/0</name><optical-channel xmlns-"http://
openconfig.net/yang/terminal-device"><config><target-output-power>-6<target-
output-power></config></optical-channel></component></components></config></
edit-config></rpc>

VII. CONTROL PLANE FAILURE AND RECOVERY

Different types of failures can happen at the control plane
layer, e.g., a process within one of the ONOS instances is
faulty or the supporting physical server has failed. This can
lead to subsequent failures and undefined behaviour of the
system. In this demonstration, we focus on ONOS deployed in
a multi-instance scenario. In such scenario ONOS is capable
of handling instance failure by leveraging shared state and
changing device mastership.

A. Device Mastership

In ONOS each instance of the cluster has a role against all
of the devices, the roles are MASTER, STANDBY or NONE.
Every device has a single MASTER instance at a given time,
while all the remaining instances stay in STANDBY mode.
The Master is elected for a device by the MastershipService
through an Atomix based election mechanism. Only the Master
of a given device can act upon it by applying configuration.

B. Demo scenario

Initially, and as Fig. 5 shows, 3 docker containers of ONOS
control the network together. The nodes are known to each
other, please note the ∗ to indicate the current node.

onos@root > nodes
id=10.100.100.101, address=10.100.19.101:9876, state=READY, version=2.3.0.a118a0bf7f

, updated=9m47s ago *
id=10.100.100.102, address=10.100.19.102:9876, state=READY, version=2.3.0.a118a0bf7f

, updated=9m48s ago
id=10.100.100.103, address=10.100.100.103:9876, state=READY, version=2.3.0.

a118a0bf7f, updated=9m45s ago

ONOS relies on raft partitions to replicate, share and distribute
information.
onos@root > partitions
----------------------------------------------------------
Name Term Members
----------------------------------------------------------
1 0 atomix-1

atomix-2 *
atomix-3

----------------------------------------------------------
2 0 atomix-1

atomix-2 *
atomix-3

----------------------------------------------------------
3 0 atomix-1 *

atomix-2
atomix-3

----------------------------------------------------------

ONOS 1 and ONOS 3 control Transponder 1 and Transpon-
der 2 respectively, having state synchronization between the
instances. One ROADM is managed by ONOS 2 while the
other by ONOS 3.
onos@root > masters
10.192.19.169: 1 devices
netconf:10.100.100.93:830

10.192.19.170: 1 devices
netconf:10.100.100.2:830

10.192.19.171: 2 devices
netconf:10.100.100.3:830
netconf:10.100.100.94:830

At step (1), ONOS 1 docker container is killed resulting in
the other instances receiving the notification for that instance
with INACTIVE state.
09:30:15,193 | INFO | atomix-cluster-events | AtomixClusterStore |

192 - org.onosproject.onos-core-primitives - 2.3.0.SNAPSHOT | Updated node
10.100.100.101 state to INACTIVE

Transponder 1 goes immediately out of management because
no NETCONF session is open to it. Mastership of Transponder
1 is then moved to active ONOS 2 via negotiation at step
(2). The new master will firstly read the state information
of the device in both ONOS traditional datastore and TAPI
data tree. Finally at step (3), ONOS 2 establishes a new
NETCONF channel with Transponder 1 that was controlled
by the deactivated ONOS 1.
09:30:15,560 INFO [DeviceManager] Local role is MASTER for netconf:10.100.100.3:830
09:30:15,567 INFO [NetconfControllerImpl] Creating NETCONF session to netconf

:10.100.100.93:830 with apache-mina
09:30:16,608 INFO [NetconfSessionMinaImpl] Connecting to netconf:superuser@10

.100.100.93:830 with timeouts C:5, R:5, I:300
09:30:16,623 INFO [NetconfSessionMinaImpl] Creating NETCONF session to netconf

:10.100.100.93:830
09:30:16,636 INFO [DeviceManager] Device netconf:10.100.100.3:830 connected

At this point ONOS 2 is again in full control of Transpon-
der 1 and can react to events and provision configuration on
it. The timestamps in the logs show a time of 751ms from
ONOS 1 gets recognized as down to when the connection
gets re-established. This measurement averages the 700-800
ms time in all the experiments we have done. The 751ms
are spent for mastership election, session re-establishment and
store notification.
onos@root > masters
10.192.19.169: 0 devices
10.192.19.170: 2 devices
netconf:10.100.100.93:830
netconf:10.100.100.2:830

10.192.19.171: 2 devices
netconf:10.100.100.3:830
netconf:10.100.100.94:830
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Fig. 5. Mastership movement in ONOS cluster

The whole recovery procedure enables a cluster of ONOS
instances to maintain control of the network at any given time
with no inconsistent state. The control plane recovery, as the
data plane one, is completed automatically without operator
intervention.

C. SSH reestablishment

ONOS ensures a continuous connection with the underlying
network devices. In our demonstration, the NETCONF SSH
session times out according to the device’s own configuration.
ONOS, upon detecting the loss of the SSH channel proceeds
to immediately re-open it from the master instance. This pro-
cedure is done automatically and ensures continuous connec-
tivity each device in the network ensuring immediate reaction
to failures. The following trace shows ONOS reestablishing
connection with the different elements.

16:32:47,135 INFO Thread-5008 [NetconfControllerImpl] 215 - org.onosproject.onos-
protocols-netconf-ctl - 2.3.0.SNAPSHOT - Trying to reestablish connection
with device netconf:10.128.200.3:830

16:32:47,145 INFO Thread-5009 [NetconfControllerImpl] 215 - org.onosproject.onos-
protocols-netconf-ctl - 2.3.0.SNAPSHOT - Trying to reestablish connection
with device netconf:10.128.200.2:830

16:32:47,283 INFO onos-netconfdevicecontroller-connection-reopen-702 [
NetconfControllerImpl] 215 - org.onosproject.onos-protocols-netconf-ctl -
2.3.0.SNAPSHOT - Connection with device netconf:10.128.200.2:830 was
reestablished

16:32:47,289 INFO onos-netconfdevicecontroller-connection-reopen-701 [
NetconfControllerImpl] 215 - org.onosproject.onos-protocols-netconf-ctl -
2.3.0.SNAPSHOT - Connection with device netconf:10.128.200.3:830 was
reestablished

16:42:48,136 INFO Thread-5035 [NetconfControllerImpl] 215 - org.onosproject.onos-
protocols-netconf-ctl - 2.3.0.SNAPSHOT - Trying to reestablish connection
with device netconf:10.128.200.3:830

16:42:48,139 INFO Thread-5034 [NetconfControllerImpl] 215 - org.onosproject.onos-
protocols-netconf-ctl - 2.3.0.SNAPSHOT - Trying to reestablish connection
with device netconf:10.128.200.2:830

16:42:48,294 INFO onos-netconfdevicecontroller-connection-reopen-704 [
NetconfControllerImpl] 215 - org.onosproject.onos-protocols-netconf-ctl -
2.3.0.SNAPSHOT - Connection with device netconf:10.128.200.2:830 was
reestablished

16:42:48,318 INFO onos-netconfdevicecontroller-connection-reopen-703 [
NetconfControllerImpl] 215 - org.onosproject.onos-protocols-netconf-ctl -
2.3.0.SNAPSHOT - Connection with device netconf:10.128.200.3:830 was
reestablished

ONOS also provides an exponential back-off for the retry.
Upon a certain number of failed retries ONOS marks the
device as OFFLINE, notifying all the listeners and removing
it from any future path computation.

VIII. DATA PLANE FAILURE AND RECOVERY

The internal architecture of ONOS is layered, where mul-
tiple systems offer services to higher level systems and ap-
plications. In particular, a flexible and advanced system in

Fig. 6. Intents Finite State Machine, source [11].

ONOS to provision services is based on Intents, i.e., high
level descriptions of data services [11]. The ODTN project
application maps north bound interface requests using the T-
API protocol to optical intents, re-using the existing intent
framework. More specifically, OpticalCircuit intents are used
to model connectivity between two client transponder ports,
and OpticalConnectivity intents are used to model connectivity
between line port of transponders passing through intermediate
ROADMs [4]. By using optical intents, we leverage the auto-
mated failure recovery built into the ONOS intent framework,
that underlays all the several types of intents provided by
the platform, optical included. Fig. 6 shows the finite state
machine that ONOS uses for intents installation, compilation
and failure detection [11].For the purpose of this work, it is
important to note that an Installed intent may move to the
Recompiling state in case of an affecting event on the topology
(e.g., a fiber-cut); recompilation may result on the computation
of a different path along which the traffic may flow and the
desired intent can be recovered. If a new path is present and
compiled it will be installed in the network as show previously.

In the following, we detail the different aspects of the
demonstration.

A. Loss of Configuration

With the traffic flowing we simulate a loss of configuration
in one of the Lumentum ROADM, by manually removing,
using its Command Line Interface (CLI), the ONOS installed
cross-connection. This emulates a device reboot, a loss of
configuration or a mis-configuration in which a given service
is removed from the device. ONOS has periodic polling and
automated checking of established configurations (flow rules).
Thus, the loss of configuration event is picked up by ONOS
during its periodic state reconciliation. During the demo we
set such period at 5s, but it can be brought even lower
to achieve optimal performance, at the cost o putting more
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strain on the network. After ONOS picks up the absence of
the expected configuration (flow) in the ROADM it imme-
diately sends a request to re-install the same configuration.

16:43:48,101 | INFO | FlowRuleDriverProvider-0 | FLowRuleManager I 247 - org.
onosproject.onos-drivers-lumentum - 2.3.0. SNAPSHOT | Missing flow rule on
netconf:10.100.100.2:830

16:43:48,479 | INFO | FlowRuleDriverProvider-0 | Lumentum-FlowRule I 247 - org.
onosproject.onos-drivers-lumentum - 2.3.0. SNAPSHOT | Lumentum device,
FlowRule coming from OpticalConnectivityIntentCompiler

16:42:48,601 | INFO | FlowRuleDriverProvider-0 |
LumentumNetconfRoadmFlowRuleProgrammable | 247 - org.onosproject.onos-drivers
-lumentum - 2.3.0. SNAPSHOT | Lumentum ROAM-20 - RPC add-connection sent to
device netconf:10.100.100.2:830

The provisioning follows the same procedure as in Sec. V-A.
This operation can take at most the configured period of
state reconciliation (e.g. 5s) plus O(500)ms for ONOS to re-
compute the path as shown in the previous logs to add to the
amount for the device to save and re-apply the configuration.
As expected the recovery time is directly related to the polling
frequency. Faster recovery is possible at the expenses of
increased message rate of the polling.

A further measurement is presented though a snippet of the
ping command
ping -D localhost | while read row
do
awk ’{ sub(/[0-9]{10}/, strftime("%Y-%m-%d %H:%M:%S", substr($0,2,10))) }1’ <<< "

$row"
done

such command gives out a millisecond timestamp per each
ping and allows us to corroborate the measurements obtained
by the ONOS logs.
[2020-01-21 16:43:47.030] 64 bytes from 10.0.0.5: icmp_seq=28407 ttl=64 time=0.463

ms
[2014-01-21 16:43:48.057] 64 bytes from 10.0.0.5: icmp_seq=28408 ttl=64 time=0.591

ms

[2014-11-10 16:43:49.456] 64 bytes from 10.0.0.5: icmp_seq=28425 ttl=64 time=1024 ms
[2014-11-10 16:43:50.353] 64 bytes from 10.0.0.5: icmp_seq=28426 ttl=64 time=0.955

ms

It can be noted that the total amount of time is 1.4s, the
deletion of the ROADM state was issued at 16:43:48.140, thus
it took ONOS a 400 ms to recognize the fault, then the 100 ms
to recompute and reinstall. The device took 900 ms to re-tune
the laser after the configuration push from ONOS.

B. Fiber-cut

With the traffic flowing we simulate a fiber cut. The fiber
cut is simulated by switching one of the ROADM’s ports to
a down state via the device Command Line Interface (CLI),
completely separate from ONOS. Such port-down event is
recognized by ONOS that in turn marks the link as failed,
broadcasting a LINK DOWN event. The link event gets
parsed by the optical path computation module inside the
Intent subsystem that, with the updated topology recomputes
the path (i.e., using remaining devices and links). Such re-
computation is automatically triggered by the LINK DOWN
event, which is processed by the controller with no human
intervention. Upon re-computing the path according to the
available topology and selected algorithm ONOS installs the
required rules in the devices along the path. The provisioning
follows the same approach of Sec. V-A.

Same measurements of times based on pings as shown in
VIII-A have been done for the fiber-cut scenario resulting in
a 1.9 seconds of disruption. The following capture shows how

a total disruption time of 1.9 seconds in the case of fiber-loss,
with 200 ms spent in signaling the loss to ONOS, 800 ms to
re-compute the path and the expected 900 ms for lasers to be
re-tuned.
[2020-01-21 16:50:21.030] 64 bytes from 10.0.0.5: icmp_seq=28407 ttl=64 time=0.474

ms
[2014-01-21 16:50:22.057] 64 bytes from 10.0.0.5: icmp_seq=28408 ttl=64 time=0.566

ms

[2014-11-10 16:50:23.956] 64 bytes from 10.0.0.5: icmp_seq=28425 ttl=64 time=1057 ms
[2014-11-10 16:50:24.952] 64 bytes from 10.0.0.5: icmp_seq=28426 ttl=64 time=0.977

ms

C. Device Failure

The same mechanism is used in case of device failure.
ONOS tries to avoid the failed resource like in the pre-
vious case. In particular, when the ONOS controller loses
the TCP/SSH connection to a device it considers such de-
vice to be in a failed state. Device disconnection triggers a
DEVICE DOWN event that triggers the recovery of intents
traversing the failed device. ONOS tries to re-use as much
as possible of the existing path, configuring on this fallback
path the same wavelength for ports and links. All of the event
handling, path computation, fail-over scenarios is done in the
ONOS intent subsystem. Also in the case of DEVICE DOWN
event the provisioning happens as in Sec. V-A. In this scenario,
the recovery time is also dependent on the actual mechanism
to detect the liveliness of the device. Relying of default
mechanisms associated to the transport protocols (TCP, SSH)
the detection of a failed device can take several seconds or
minutes. Using Keep-Alives (directly if the protocol supports
such feature or polling the device using operations in order to
obtain a reply) can reduce this time but again at the expenses
of increased rate of messages.

The case of a device failure yields recovery measurements
close to the fiber cut because the procedure in ONOS is the
same.

IX. CONCLUSION

This demonstration has shown the use of the ONOS SDN
controller to provision data connectivity services across a
disaggregated optical network with real hardware exposing
common and open data models. Such deployment enables
advanced recovery, both at the control and data planes. For
the former, the recovery leverages ONOS distributed stores
and offers high availability through Atomix, providing a level
of robustness against failures of the control processes. For
the latter, ONOS offers failure detection mechanisms that im-
mediately react to network failures re-configuring the overall
network to continuously provides end-to-end services with a
disruption of 1.9 seconds in the case of data plane failures and
no signal disruption in case of control-plane failures.

This demonstration showcased the first example of a re-
silient control plane for optical networks achieved through
the use of open source software, open APIs and open source
device models. The chosen APIs, protocols and models reflect
also the current requirements from service providers and
offerings of the Optical industry.

Overall, this work showed the feasibility of the selected ap-
proach while further work is required to evaluate the scalability
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of the system with a realistic number of network devices and
a realistic traffic matrix.
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