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ABSTRACT

Neutron noise analysis addresses the description of small time-dependent flux fluctuations
in reactor cores, induced by small global or local perturbations of the macroscopic cross
sections due to density fluctuations of the coolant, to vibrations of fuel elements, control
rods, or structural materials. The general noise equations are obtained by assuming small
perturbations around a steady-state neutron flux and by subsequently taking the Fourier
transform in the frequency domain. Recently, new neutron noise solvers have been imple-
mented in diffusion and transport theory in APOLLO3®, the multi-purpose deterministic
transport code developed at CEA, and a new stochastic solver has been implemented for
the neutron noise analysis in the frequency domain in the Monte Carlo code TRIPOLI-
4® also developed at CEA. In this paper, we compare the two solvers for the case of fuel
pin oscillations in a simplified UOX fuel assembly, in view of proposing the examined
configurations as a benchmark for neutron noise calculations.
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1. INTRODUCTION

Neutron noise analysis addresses the description of small time-dependent flux fluctuations induced
by small global or local perturbations of the macroscopic cross sections [ 1]]. These fluctuations may
occur in nuclear reactors due to density fluctuations of the coolant, to vibrations of fuel elements,
control rods, or any other structures in the core. In power reactors, ex-core and in-core detectors
can be used to monitor neutron noise with the aim of detecting possible anomalies and taking the
necessary measures for continuous safe power production.

In view of the importance of the neutron noise analysis for reactor applications, in 2016 new
neutron noise solvers have been implemented in diffusion and transport theory in APOLLO3®, the
multi-purpose deterministic transport code developed at CEA [2]. More recently, a new stochastic
solver has been implemented for the neutron noise analysis in the frequency domain in the Monte
Carlo code TRIPOLI-4®, also developed at CEA [3]. Both solvers are under active verification
and validation in the framework of the CORTEX H2020 European project [4]].

In this paper, we will compare for the first time the capabilities of these solvers by performing neu-
tron noise simulations in a simplified UOX fuel assembly. This paper is organized as follows. In
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Sec. 2} the general neutron noise theory will be briefly introduced, then the Monte Carlo algorithm
implemented in TRIPOLI-4® and the deterministic algorithm implemented in APOLLO3® will be
presented. In Sec. 3| we will compare the capabilities of the proposed Monte Carlo and determin-
istic solvers by computing the neutron noise propagation in a simplified UOX fuel assembly, for
both Green’s function solutions corresponding to noise sources located at fixed points, and more
realistic cases where the noise source comes from a steady state neutron distribution. Conclusions
will be drawn in Sec.

2. DESCRIPTION OF APOLLO3® AND TRIPOLI-4® NEUTRON NOISE SOLVERS
2.1. Neutron noise theory

The general noise equations are obtained by assuming small perturbations W (r, 2, £, t) = Wy (r, 2, E)+
VU (r, Q, E,t) (which allows for a linear theory) around a steady-state neutron flux W, and by sub-
sequently taking the Fourier transform in the frequency domain. The analysis is performed based
on the neutron kinetic equations, including delayed neutron precursors. The outcome of the Fourier
transform analysis is a fixed-source equation with complex operators for the perturbed neutron field
oW, which can then be solved so as to predict noise measurements at detector locations. For each
frequency w, the perturbed neutron flux is a complex function having an amplitude and a phase.
Imposing a periodic perturbation of the kinetic operator, the noise equation reads [1]:

(Q V + So(r, E) —|—z—> SU(r, Q, B, w // Sos(r, Q- Q, B — E)U(r, Y, E',w)dE'dSY

|
kxim // ENSos(r, BN (r, ¥, E,w)dE'dY

k Y Xi // Viw(E) S0 (r, B)0U (r, @, B, w)dE'dQ + S(r, @, B,w), (1)
. m ’
J

where 7 is the imaginary unit, w = 27 f the angular frequency, and

2 Y
v () = (M) vi(E), @)

2 2
)\j—l—w

for the precursor family j, z/g(E ) being the average number of delayed neutrons emitted for family
75 all other notations are standard. Thus, because of the delayed neutrons, the production operator
depends on the frequency w. Equation (I) can be conceptually split into a system of two equations
for the real and imaginary part of §W. The two equations are formally coupled by two terms: iw/v
and the modified delayed production operator including the complex multiplicity chl,w(E)' The
noise source S is defined by:
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where 6%, (r, F', w) is the Fourier transform of the perturbed term of the macroscopic cross section
Y.(r,E t) =g.(r, E) + 63,(r, E,t), ¥y, being the steady-state macroscopic cross section.

2.2. The deterministic algorithm implemented in APOLLO3®

In order to solve Eq. with the deterministic code APOLLO3®, we apply the same iteration
loops to the fission source (but the production operator is now complex) and to the scattering
source as customary, and we add an iteration loop between the real and imaginary parts of the
neutron noise equation to the solution of the one-group problem: details can be found in [5]. Thus,
we can use the standard one-group diffusion or transport solver and consequently benefit from all
numerical methods already implemented in these one-group solvers. This solution scheme has
been implemented in the integro-differential transport (IDT) solver of APOLLO3® [2] The
IDT solver is a lattice solver based on the S,, discrete ordinates method and on the method of short
characteristics (MOSC). For the moment, this 2-D neutron noise solver developed in APOLLO3®
can be applied to homogeneous Cartesian geometries. Future work will concern the extension
to heterogeneous Cartesian geometries. For the sake of conciseness, the convergence properties
of the deterministic solver, which depend on the relative weight of the contribution between the
imaginary and real parts, will be discussed elsewhere.

2.3. The Monte Carlo algorithm implemented in TRIPOLI-4®
2.3.1. The general algorithm

We briefly sketch the Monte Carlo algorithm that we have chosen to implement in TRIPOLI-4®; a
thorough description is given in [6,/7]. Similarly as in [8}9]], our method is based on the simulation
of particles carrying complex statistical weights w(w) = {wg(w), wg(w)}, where the signs of the
real and imaginary parts can be positive or negative. In [§]], the complex cross section g + iw /v
on the left-hand-side of Eq. is dealt with explicitly by modifying the particle weights during
flights. For our algorithm, we choose instead to work with a real cross section and we modify the
collision kernel accordingly. This is achieved by adding a term w/v x 6 to both sides of Eq. (),
and moving the term iw/v x 0V to the right-hand-side. In this case, we work with a real modified
total cross section Yo (r, E,w) = Xo(r, E) + X,(£) > 0 where ¥,(£) = w/v > 0. Hence, flight
lengths are sampled as in standard Monte Carlo calculations, provided that >3 is used instead of
Y. Correspondingly, we have two types of particle productions: regular fission with probability
Yo,r/ X0, and a special w-production associated to a copy operator with probability 3, />. Implicit
capture (with forced fission) and Russian roulette can be used as in standard Monte Carlo methods.
Russian roulette and splitting are applied separately to the absolute value of the real and imaginary
parts of the particle weight: the particle is killed only if the real and the imaginary parts are both
killed [[8]. The major advantage of this sampling scheme is that it introduces minimal modifications
to standard Monte Carlo algorithms for particle transport and can thus be easily implemented in
continuous-energy production Monte Carlo codes such as TRIPOLI-4®. Standard scores, such as

*This solution scheme has been also implemented in a 2-D nodal diffusion solver of
APOLLO3® based on the classical Nodal Expansion Method, but we will not use this solver
in the present paper.

Proceedings of the PHYSOR 2020, Cambridge, United Kingdom



Amélie Rouchon et al., APOLLO3® AND TRIPOLI-4® NEUTRON NOISE SOLVERS

flux and reaction rates over volumes and meshes, have been extended in order to decompose the
complex Monte Carlo estimators into modulus and phase, or equivalently real and imaginary part.
The convergence properties of the Monte Carlo solver also depend on the relative weight of the
contribution between the imaginary and real parts [|6], and will be more thoroughly discussed in a
forthcoming paper.

2.3.2. The noise source sampling method

In the general case, the noise source S is a complex function depending on the stationary flux ¥,
and the sign of its real and imaginary part can thus be space and/or energy-dependent. In order
to sample arbitrary noise sources by Monte Carlo methods, we implemented in TRIPOLI-4® the
following method [6,7]]: a standard power iteration is first run in order to determine W, without
approximations. Convergence is achieved after a sufficient number of inactive cycles; then, each
term in Eq. (3)) is sampled by weighting the ‘noise particles’ generated by each component of S by
the stationary collision density associated to W. The strategy is as follows: a complete power iter-
ation is performed once in the first batch: during the final cycle noise source particles are sampled
so that the noise simulation can begin, while the generated fission neutrons are transferred to the
second batch. This latter runs a few additional inactive cycles in order to ensure reasonable decor-
relation between cycles before sampling the noise source for the second replica. The third batch
gets the fission neutrons generated by the second one, and so on. In a parallel run, each processor
would apply this strategy. The critical eigenvalue £ that is required for the noise equations can be
estimated during the first critical calculation (or can be obtained from a separate calculation).

3. COMPARISON OF APOLLO3® AND TRIPOLI-4® NEUTRON NOISE SOLVERS

Previous work has concerned the verification of the APOLLO3® and TRIPOLI-4® neutron noise
solvers against reference analytical solutions in a homogeneous infinite medium and in an infinitely-
long homogeneous cylinder (specifications taken from [8]]) and in a one-dimensional homogeneous
core surrounded by a reflector (specifications taken from [[10]). In order to further illustrate the
capabilities and the accuracy of the solvers, here we perform code-to-code comparisons in a sim-
plified UOX fuel assembly, in two dimensions.

3.1. Description of the benchmark configuration

The chosen geometry is a simplified UOX fuel assembly, with reflecting boundary conditions,
composed by 264 homogeneous square fuel pins E] (0.7314x0.7314 cm) with 25 homogeneous
water holes (1.26x1.26 cm). For the sake of simplicity, and in view of comparing the two solver
on clean configurations where a high numerical accuracy can be achieved, all simulations (steady
state and noise transport) have been performed with two energy groups (fast and thermal groups
without up-scattering) and one precursors family. For the APOLLO3® transport solver, we chose
an order of discrete ordinates S3» and a constant approximation of the volume flux with the spatial
meshes, as shown in Fig. I} For the criticality calculations, we obtain a critical k-eigenvalue equal

"The s%lare configuration is required by the 2-D neutron noise solver developed in
APOLLO3®™ being restricted to homogeneous Cartesian geometries for the time being.
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to 0.99912 + 8x 10~ with TRIPOLI-4® (with 3x10* active cycles and 10* neutrons per cycle)
and to 0.99784 with APOLLO3® (10~° tolerance on the outer iterations and no acceleration). The
corresponding steady-state fluxes are shown in Fig.[2] Relative errors between APOLLO3® and
TRIPOLI-4® for the steady-state fluxes are smaller than 1% on the whole assembly.

Figure 1: Simplified UOX fuel assembly: APOLLO3® 2D geometry with spatial meshes.
The perturbed fuel pin is marked in black.
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(a) Fast group (A.U.). (b) Thermal group (A.U.).

Figure 2: Steady-state flux of the reference case (scalar flux, TRIPOLI-4® results with o <
0.3%).

3.2. A simple noise source

As a first noise calculation for the two solvers, we impose a simple isotropic noise source S =
—1+ ¢ atw = 3 Hz in a perturbed fuel pin, in the thermal group (the location of the perturbed fuel
pin is detailed in Fig.[I)). Simulation findings for the spatially and energy-resolved § U over the fuel
assembly are shown in Fig. 3} we have converted the real and imaginary part in polar form, with
modulus and phase. The phase of the neutron noise is almost constant, and is not shown. A good
agreement is found between APOLLO3® and TRIPOLI-4®: the relative errors on the modulus are
comparable to the relative errors on the steady-state flux, i.e. smaller than 1% over the assembly.
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The noise calculations of TRIPOLI-4® have been performed with 3x 10 replicas and 10* particles
per replica.

20

(a) Modulus of fast neutron noise (A.U., (b) Modulus of thermal neutron noise (A.U.,
TRIPOLI-4® results with o < 0.45%). TRIPOLI-4® results with o < 0.45%).
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(c) Relative errors on the modulus of fast  (d) Relative errors on the modulus of thermal
neutron noise (%). neutron noise (%).

Figure 3: Results and relative errors (%) between TRIPOLI-4® and APOLLO3® on the
modulus of §¥(w) induced by a simple isotropic noise source at 3 Hz.

3.3. An oscillation-induced noise source

We consider next the spatially and energy-resolved modulus and phase of ¥(w) induced by a
sinusoidal oscillation of all macroscopic cross sections of a perturbed fuel pin at w = 1 Hz (the
position of the perturbed fuel pin is detailed in Fig.[I)). The perturbed term 0% is arbitrarily defined
by: 0%(r, E,t) = pXo(r, E) cos(wot) with wy the angular frequency of the perturbation (wg = 27
rad/s), p = 4.1% for the total cross section, p = 3.4% for the scattering cross section and p = 2.1%
for the fission cross section. Contrary to the previous case, here S(r, 2, E, w) depends on the shape
of the stationary flux W, so that we can probe the correct implementation of the noise source
sampling method. Results are shown in Fig. ] for a noise source corresponding to a critical state
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W, computed as detailed above. The phase of the neutron noise is again almost constant, and will
not be shown. Similarly as for the previous case, a good agreement is found between APOLLO3®
and TRIPOLI-4® for the oscillation calculation: the relative errors on the modulus are smaller than
2%. The noise calculations of TRIPOLI-4® have been performed with 10° replicas and 3 x 10*
particles per replica.

(a) Modulus of fast neutron noise (A.U., (b) Modulus of thermal neutron noise (A.U.,
TRIPOLI-4® results with o < 4%). TRIPOLI-4® result with o < 4%).
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(c) Relative errors on the modulus of fast  (d) Relative errors on the modulus of thermal
neutron noise (%). neutron noise (%).

Figure 4: Results and relative errors (%) between TRIPOLI-4® and APOLLO3® on the
modulus of §¥(w) induced by an oscillation noise source at 1 Hz.

4. CONCLUSIONS

In this paper, we have briefly compared the deterministic APOLLO3® neutron noise solver with
the new TRIPOLI-4® solver for the neutron noise analysis in the frequency domain, in view of
proposing the examined configurations as benchmark cases for neutron noise calculations. Future
work will concern the comparison with neutron noise simulations performed with the APOLLO3®
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neutron noise solver in the time domain (currently under development and testing [11]]), and the val-
idation of the developed solvers based on the experimental campaigns carried out in the framework
of the COLIBRI program at the Crocus reactor (operated by EPFL, Lausanne, Switzerland) [12].

ACKNOWLEDGEMENTS

APOL,LOS® and TRIPOLI-4® are registered trademarks of CEA. The authors gratefully acknowl-
edge Electricité de France (EDF) and FRAMATOME for partial financial support. The research

leading to these results has received funding from the Euratom research and training programme
2014-2018 under grant agreement No 754316 (CORTEX project [4]]).

REFERENCES

[1] Pazsit, 1., Demaziere, C., 2010. “Noise Techniques in Nuclear Systems”. Handbook of Nu-
clear Engineering, Ed. D. G. Cacuci,3, 2, Springer Verlag.

[2] Schneider, D. et al., 2016. “APOLLO3: CEA/DEN Deterministic multi-purpose code for
reactor physics analysis”. Unifying Theory and Experiments in the 21st Century (PHYSOR
2016), Sun Valley, Idaho, United States, May, 1-5.

[3] Brun, E. et al., 2015. “TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code”.
Annals of Nuclear Energy 82, 151-160.

[4] Demaziere, C. et al., 2018. “Overview of the CORTEX project”. Reactor Physics Paving
The Way Towards Mode Efficient Systems (PHYSOR 2018), Cancun, Mexico, April 22-26.

[5] Rouchon, A. et al., 2017. “The new 3-D multigroup diffusion neutron noise solver of
APOLLO3® and a theoretical discussion of fission-modes noise”. International Confer-
ence on Mathematics & Computational Methods Applied to Nuclear Science & Engineering
(M&C 2017), Jeju, Korea, April 16-20.

[6] Rouchon, A. et al., 2017. “A new Monte Carlo method for neutron noise calculations in the
frequency domain”. Annals of Nuclear Energy 102, 465-475.

[7] Rouchon, A. et al., 2019. “The new neutron noise solver of the Monte Carlo code TRIPOLI-
4® International Conference on Mathematics & Computational Methods Applied to Nu-
clear Science & Engineering (M&C 2019), Portland, Oregon, United States, August, 25-29.

[8] Yamamoto, T., 2013. “Monte Carlo method with complex-valued weights for frequency
domain analyses of neutron noise”. Annals of Nuclear Energy 58, 72-79.

[9] Yamamoto, T., 2018. “Implementation of a frequency-domain neutron noise analysis method
in a production-level continuous energy Monte Carlo code: Verification and application in a
BWR”. Annals of Nuclear Energy 115, 494-501.

[10] Demaziere, C., 2011. “CORE SIM: A multi-purpose neutronic tool for research and educa-
tion”. Annals of Nuclear Energy 38, 2698-2718.

[11] Gammicchia, A. et al., 2019. “Neutron kinetics equations in APOLLO3® code for applica-
tion to noise problems”. International Conference on Mathematics & Computational Meth-
ods Applied to Nuclear Science & Engineering (M&C 2019), Portland, USA, August 25-29.

[12] Rais, A. et al., 2019. “Towards the validation of neutron noise simulators: qualification
of data acquisition systems”. International Conference on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering (M&C 2019), Portland, USA, August
25-29.

Proceedings of the PHYSOR 2020, Cambridge, United Kingdom



	INTRODUCTION
	DESCRIPTION OF APOLLO3® AND TRIPOLI-4® NEUTRON NOISE SOLVERS
	Neutron noise theory
	The deterministic algorithm implemented in APOLLO3®
	The Monte Carlo algorithm implemented in TRIPOLI-4®
	The general algorithm
	The noise source sampling method


	COMPARISON OF APOLLO3® AND TRIPOLI-4® NEUTRON NOISE SOLVERS
	Description of the benchmark configuration
	A simple noise source
	An oscillation-induced noise source

	CONCLUSIONS

