
Virtualization of Disaggregated Optical Networks with 
Open Data Models in Support of Network Slicing 

RAMON CASELLAS, 1,* ALESSIO GIORGETTI, 2 ROBERTO MORRO, 3 RICARDO 
MARTINEZ, 1 RICARD VILALTA, 1 RAUL MUÑOZ, 1 
1CTTC/CERCA, Av. Carl Friedrich Gauss n.7, 08860 Castelldefels, Barcelona, Spain. 
2CNIT/SSSUP, Via Moruzzi n. 1, 56124 Pisa, Italy 
3TIM, Via G. Reiss Romoli n. 274, 10148 Torino, Italy. 
 
*Corresponding author: ramon.casellas@cttc.es 

Received 06 July 2019; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 

Network	slicing	has	been	a	major	selling	point	of	5G	networks,	where	a	slice	is	roughly	defined	as	a	self‐contained	
logical	network	on	top	of	a	shared	infrastructure	tailored	for	a	specific	service	or	vertical	industry,	composed	of	
heterogeneous	resources	(computing,	storage,	bandwidths)	and	typically	involving	specific	application	and/or	
networking	functions.		The	relationship	between	the	network	slicing	and	the	underlying	network	virtualization	is	
an	open	research	topic,	allowing	multiple	deployment	models.	In	particular,	a	specific	model	of	interest	involves	
the	virtualization	of	the	optical	infrastructure,	where	optical	virtual	networks	are	instantiated	in	support	of	
network	slicing,	so	the	virtual	network	underlies	and	provides	connectivity	to	component	functions	of	a	network	
slice.		

In	this	paper,	we	propose	and	implement	a	network	virtualization	architecture	for	open	optical	(partially)	
disaggregated	networks,	based	on	the	concept	of	device	hypervisor	relying	on	OpenConfig	and	OpenROADM	data	
models,	in	support	of	5G	network	slicing	over	interconnected	NFVI‐PoPs.	The	architecture	is	experimentally	
validated,	showing	the	provisioning	of	ITU‐T	flexi‐grid	Network	Media	Channels	across	a	virtualized	network.	 	

http://dx.doi.org/10.1364/JOCN.99.099999 

1. INTRODUCTION 
 
Network slicing has been a major selling point of 5G networks since 

initially proposed by the NGMN [1], to deal within the heterogeneous 
requirements of services offered to a multiplicity of vertical industries, 
in terms of e.g., latency, bandwidth, security, or resiliency.  

Briefly, a network slice instance (NSI) is composed of a set of network 
functions and the resources enabling the deployment of these functions, 
forming a complete instantiated logical network to meet certain 
network characteristics for a specific service. Macroscopically, 
corresponds to a logical network of interconnected functions and 
resources, supported over a shared infrastructure, generalizing and 
unifying previous concepts such as virtual private networks (which 
become mechanisms by which slicing is deployed and enforced).  

In this work, we focus on network slicing that is implemented in 
terms of the ETSI NFV framework, with the specific scenario that the 
underlying infrastructure spans multiple NFVI points of presence 
(NFVI-PoP) that are geographically distributed and interconnected by 
an optical transport network. Network Slices are mapped to ETSI NFV 
Network Services (NS, roughly defined as a set of interconnected VNFs) 

supporting a given application. The adoption of a reference architecture 
such as the ETSI NFV Management and Orchestration (MANO) 
framework can provide an efficient network service management and 
resource orchestration from an end-to-end perspective [2].  In 
particular, we assume that the optical transport network is partially 
disaggregated (disaggregating the optical transceiver from the network 
elements) and using open and standard data models for the considered 
devices. In this context, the transport network needs to become a 
resource under the umbrella orchestrating system. 

The relationship between slicing and the allocation of resources from 
the underlying transport network is still a topic of active research, 
including the role of network virtualization.  In this regard, it is expected 
that the virtualization	of	the	transport	network itself [3] can provide the 
desired isolation from the transport network perspective. Network	
virtualization is roughly defined as the partitioning and composition of 
the underlying physical optical infrastructure to create co-existing 
Optical	Virtual	Networks	(OVN),	and is a key enabler for network slicing, 
as it provides the necessary technologies to fulfill the transport 
requirements associated to the supported slice instance(s). An OVN 
underlies and provides connectivity to component functions of a 
network slice. Ultimately, the joint optimization of the Network Slice 
Instances(s) – including function placement -- and the underlying OVN 



provides the maximum flexibility for the constrained allocation of 
resources and efficient end-to-end network slice orchestration relies on 
multi-layer optimization (e.g. dynamic demands for the slices instances 
may have a clear impact on the optical transport). Fig. 1 shows the 
architectural elements in which Network Slices are deployed over one 
or more ETSI NFV network service(s) using a NFV Orchestrator (NFVO), 
which allocates Virtualized Network Functions (VNFs). The NFVO is 
able to request connectivity services from a SDN controller, by means of 
a dedicated functional component of the MANO named WAN 
Infrastructure Manager (WIM).  

 

	Fig.	1.  Enabling Network slicing over virtualized disaggregated optical 
networks with ETSI NFV MANO. 

Network virtualization has been thoroughly studied in the past (see 
[3, 4] and references within) both from an architectural and protocol 
point of view, including challenges and enabling technologies. 
Algorithmic aspects related to the so-called network	embedding	[5, 6, 7] 
address the computation of virtual networks on top of a common 
infrastructure. This work complements previous ones in the sense that 
we consider the virtualization of an open transport network, with the 
aim of supporting the aforementioned NFV-based slicing, and assuming 
a partial disaggregation model. Let us note that an in-depth discussion 
of the different options regarding disaggregation is provided in [8]. We 
limit our scope to partial transceiver and network element 
disaggregation as the main use cases in the scope of the Metro-Haul [9] 
and the ODTN [10] projects. 

Our macroscopic contribution covers the design, implementation 
and experimental evaluation of a network	virtualization	mechanism	that	
relies	on	virtualized	devices	characterized	by	their	data	model.  We cover 
devices modeled as OpenConfig terminal devices/Optical Platforms 
[11] or OpenROADM devices [12] as detailed in Section 2. 
Macroscopically, our main contributions are:  

1) We propose and implement a virtualization/slicing architecture 
based on the concepts of OVN	 manager and per‐device	
hypervisor	entity.  

2) We extend the ONOS SDN controller with OpenConfig and 
OpenROADM device drivers and applications exporting a TAPI 
North Bound Interface (NBI) to control a disaggregated optical 
network based on such data models, enabling end users to 
automatically provision connectivity services that correspond 
to ITU-T network media channels (NMC) either directly over a 
physical infrastructure or a virtualized one. 

3) We demonstrate the provisioning of such NMCs a particular 
OVN, with emulated optical nodes that are virtualized using 
containers.  

This paper extends the contribution presented in OFC2019 [13]. The 
main extensions in this paper are as follows. First, we elaborate on the 
concepts of network slicing and network virtualization, linking with 
actual initiatives such as the ACTN model, the ONF network 
virtualization and TAPI models in order to provide the technological 
background. Next, the used data models for the SDN controller North 
Bound Interface (NBI) as well as the underlying optical devices (in 
particular, OpenConfig and OpenROADMs) are detailed in Section 3.  A 
new section has been introduced to provide as short summary of 
implementation aspects -- related to the integration of such devices, 
covering both the development of drivers within our selected SDN 
framework and the development of the SDN agents – reported in 
Section 4, along with pointers to Open Source software within the ONF 
ONOS Network Operating System framework. Additional examples on 
how a device is (statically) partitioned are provided. Finally, additional 
experimental data from the validation and proof-of-concept has been 
added to the section on performance evaluation. 

2. OPEN DATA MODELS 
The proposed network virtualization approach of disaggregated optical 
networks relies on (ideally open and standard) data models that are 
modular and heavily rely on componentization. Such data models 
abstract the underlying devices in terms of components, ports, links, 
circuit packs, degrees / directions, etc., easing the design of (quasi static) 
partitioning of such devices, assigning a subset of resources to a 
particular instance. Before introducing the virtualization and 
partitioning mechanism, this section reviews the main traits and 
characteristics of the involved data models, not only from a device 
perspective, but also from the perspective of the service models and 
northbound interfaces. 

A. Transport API (TAPI) as North Bound Interface 

 

	Fig.	2. TAPI models as Controller NBI (network orchestration) 

With end-to-end optical networks being increasingly segmented in 
domains, (e.g. in deployment models commonly referred to as vendor 
domains or islands), SDN Controllers offer proprietary interfaces to 
applications (or Network Orchestrators). This heterogeneity of 
controllers interfaces forces the use of “dedicated plugins”, making it 
difficult and expensive to extend.  There is a clear need for a standard 
interface, across multiple domains and vendors, with common models, 
to act as a controller NBI (see Fig. 2). The Transport API (TAPI) [14, 15] 
published by the ONF meets the main requirements to be a protocol and 
interface used between an orchestrator and multiple domain 
controllers. Of particular interest is the TAPI 2.1 release, with its 
increased support for the photonic media layer.  In simple terms, a TAPI 
based interface between a client and a server offers multiple services. 



Common	Context. The TAPI context is the shared information between 
a TAPI client (user) and the TAPI server (SDN controller). The model 
defines a TAPI domain as being able to provide services between 
Service Interface Points (or SIPs) mainly characterized by their 
universally unique identifiers (UUIDs). A basic operation for a client is to 
“retrieve” the context in order to obtain the list of SIPs, so connectivity 
services are requested between two (or more) exported SIPs.  

Topology	context	and	models. If a given TAPI server supports the 
topology model, it augments the TAPI shared context with a list of 
topologies. Each topology is composed of a list of nodes, which, in turn, 
have Node Edge Points (NEPs). Links connect two NEPs. The model is 
flexible enough to support recursive topologies and different levels of 
abstraction, with the level of detail exported being configurable by SDN 
controller policy. A client is thus able to obtain an (abstracted) view of 
the topology and map TAPI SIPs to external NEPs.  Topologies can be 
recursive in which a given node at a given topology abstraction layer 
may abstract multiple nodes in a network subdomain (see Fig. 3). 

 

Fig.	 3.  Illustration of TAPI models: the notion of TAPI domain 
(recursive) topology. 

Connectivity	context	and	models. This model augments the shared 
context in order to support Connectivity Services. The instantiation of a 
connectivity service relies on the instantiation of several connections 
(e.g. one end-to-end and internal at each TAPI node, see Fig. 4). For this, 
Connection End Points (CEPs) are instantiated over NEPs and 
connections involve two or more CEPs. A common operation is thus to 
request a connectivity service between two SIPs (for a point-to-point 
connection) and the SDN controller shall perform the logic to perform 
per-device configuration based on the end-to-end service. 

 

Fig.	4.  Illustration of TAPI models: Connectivity Service / Connection 
concepts, between Connection End Points (CEPs). 

B. OpenConfig Optical Platform and Terminal Devices 

The OpenConfig project focuses on compiling a consistent set of vendor-
neutral YANG data models. These data models cover a variety of 
network elements, from routers to optical switches. In our scope, optical 
transceivers (and similar devices such as mux-ponders) are modeled 
using the OpenConfig platform and the optical terminal-device models. 
The former defines a platform as having software and hardware 
components (such as line cards, ports, transceivers or optical channels). 
The latter allowing the activation of optical channels – in terms of 
frequency, power and operational mode – within line ports and the 
association (mapping) of client signals to optical channels in a quite 
flexible way. The latter covers the configuration of a terminal device and 
encompasses two main operations: first, configuring the optical 
channels that are present at the line ports, in terms of nominal central 
frequency, operational mode, and transmission power. Second, to 
associate client ports signals to optical channels in one or more 
multiplexing stages [11]. 

C. OpenROADM device model 

The device model proposed by OpenROADM (in this work we cover 
device model v2.2) is sketched in Figure 5. From a device perspective, a 
ROADM is composed of a number M of directions or degrees (DEG) and 
a number N of Shared Risk Groups or SRGs (OpenROADM terminology 
for Add/Drop stages). A given degree has RX and TX amplifiers and a 
WSS to MUX/DEMUX the optical signals coming to/from external links, 
other degrees or add/drop stages.  SRGs combine WSS, amplifiers and 
Combiners/Splitters. All the different elements are interconnected by 
physical and internal links. 

The actual YANG device model is quite comprehensive. 
Macroscopically, it defines a first section related to the device 
information (common language node identifiers, vendor, model, serial 
number, geolocation coordinates, etc.) followed by a section that 
includes a list of circuit-packs, describing the physical architecture 
including their components ports and naming, as well as the 
correspondence in terms of actual racks and shelves. 

 

 Fig.	5.  Logical view of an OpenROADM v2.2 device, showing the main 
components such as  3 degrees/directions (with their respective TX/RX 
amplifiers and WSS) and a Shared Risk Group (SRG).  

The next section details the set of ROADM interfaces (logical 
connection or trail termination points that can be supported over either 
underlying logical interfaces or directly physical ports), resulting in an 
interface hierarchy. Another section lists the internal links (links 
between ports of a given component or circuit pack), the physical links 

D
EG

1‐
A
M
PT

X‐
IN

SHELF_DEG3 SHELF_DEG1

DEG2‐AMPTX

SRG1‐CS

DEG2‐AMPRX

D
E
G
1
‐A
M
P
R
X

D
E
G
1
‐A
M
PT

X

SRG1‐AMPTX SRG1‐AMPRX

DEG1‐WSS‐OUT1

D
E
G
1
‐T
T
P
‐T
X

DEG1‐CTP‐RX

D
EG

1
‐T
T
P‐
R
X

DEG2‐TTP‐TXDEG2‐TTP‐RX

DEG1‐CTP‐TXDEG3‐CTP‐RX

DEG3‐CTP‐TX

DEG2‐CTP‐RX

DEG2‐CTP‐TX

D
E
G
3
‐T
T
P
‐T
X

D
E
G
3
‐T
T
P
‐R
X

SRG1‐CP‐RX

SRG1‐CP‐TX

SH
ELF_D

E
G
2

DEG1‐AMPTX‐OUT
D
E
G
1
‐W

SS

D
EG

1‐
A
M
PR

X
‐O

U
T

D
EG

1‐
W
SS
‐R
X

D
EG

1
‐W

SS
‐T
X

DEG1‐WSS‐OUT2

DEG1‐WSS‐OUT6

DEG1‐WSS‐IN1

DEG1‐WSS‐IN2

DEG1‐WSS‐IN6

DEG1‐AMPRX‐IN

D
EG

2‐
W
SS
‐I
N
1

SRG1‐WSS

DEG2‐AMPTX‐OUTDEG2‐AMPRX‐IN

DEG2‐WSS‐RX DEG2‐WSS‐TX
DEG2‐AMPRX‐OUT DEG2‐AMPTX‐IN

D
E
G
3
‐W

SS

D
E
G
3
‐A
M
P
T
X

D
E
G
3
‐A
M
PR

X

D
EG

3‐
A
M
PR

X‐
O
U
T

D
EG

3‐
W
SS
‐R
X

DEG3‐WSS‐IN2

D
EG

3‐
W
SS
‐T
X

D
EG

3‐
A
M
P
TX

‐I
N

DEG3‐AMPRX‐IN

DEG3‐AMPTX‐OUT

DEG2‐WSS

SRG1‐WSS‐TX SRG1‐WSS‐RX

SH
EL
F_
SR

G
1 SHELF

CIRCUIT‐PACK

DEG3‐WSS‐IN1

SR
G
1
‐W

SS
‐I
N
1

D
EG

2
‐W

SS
‐O

U
T1DEG2‐WSS‐OUT2

D
EG

2‐
W
SS
‐O

U
T
6

SR
G
1
‐W

SS
‐I
N
2

DEG3‐WSS‐OUT2

DEG3‐WSS‐OUT1

DEG2‐WSS‐IN2

DEG3‐WSS‐OUT6

SRG1‐WSS‐IN3 SRG1‐WSS‐OUT1SR
G
1
‐W

SS
‐O

U
T2

D
EG

2
‐W

SS
‐I
N
6

SR
G
1
‐W

SS
‐O

U
T3

DEG3‐WSS‐IN6

SRG1‐AMPTX‐IN SRG1‐AMPRX‐OUT

SRG1‐AMPRX‐INSRG1‐AMPTX‐OUT

SRG1‐CS‐IN1

SRG1‐CS‐OUT1 SRG1‐CS‐OUT2

SRG1‐CS‐IN2

SRG1‐CS‐OUT3

SRG1‐CS‐IN3

SRG1‐CS‐OUT4

SRG1‐CS‐IN4

SRG1‐CS‐OUT5

SRG1‐CS‐IN5

SRG1‐CS‐OUT6

SRG1‐CS‐IN6

SRG1‐CS‐TXSRG1‐CS‐RX Physical‐link

ROADM‐external port



(links between different components, such as a link between degrees or 
between degrees and SRGs, commonly named express, add or drop 
links) and external links (links that are instantiated to reflect 
connectivity between ROADMs). Next, the model also includes two lists 
for the main components: a list of numbered degrees, which defines the 
ROADM overall degree, and a list of SRGs including a list of add drop port 
pairs (client ports towards the terminal devices). Finally, the roadm-
connection list includes the connections that are active (established) 
in the device, between two logical interfaces.  

 

 

Fig.	6.  Initial Capability discovery of the device, using the exchange of 
NETCONF hello messages. 

Network	 and	 Topology	Discovery: From the point of view of 
networks operation, the network operator configures the SDN 
controller with attributes of the devices that are to be controlled. This 
includes IP addresses and ports where the NETCONF server is running 
as well as other relevant data such a user credentials, etc. The SDN 
controller establishes a persistent NETCONF session with the device. 
After an initial capability exchange, in which the NETCONF client 
(ONOS) discovers what models and features are supported (Fig. 6) 
using a HELLO message. Next, the SDN controller issues <get> and 
<get-config> messages as needed to retrieve info about the devices. 
Typically, a <get> operation with a subtree filter of <org-
openroadm-device><info/> allows retrieving basic data to add 
the device into the SDN controller device manager. Similar operations 
regarding the composition of the device circuit packs and ports, in order 
to retrieve internal connectivity and to discover port capabilities. 

 
Service	 Creation: to request a connectivity service, the user or 

operator may retrieve the list of the TAPI context SIPs and request a 
connectivity service between a pair of them. The SDN controller maps 
those SIPs to node edge points, and performs a routing and spectrum 
assignment process that finds the k-shortest path between the devices 
and performs first fit spectrum allocation. Once completed, the 
controller configures flow rules each device: for the Terminal Device, a 
logical channel association is instantiated within the device between a 
client (transceiver) port and an optical channel component bound to the 
line port of the device. For each of the OpenROADM devices across the 
path, a ROADM internal connection is requested: i) OTS and OMS 
(optical transport and optical multiplex) interfaces are created within 
each degree (if not existing), ii) Supporting Media Channel and NMC 
interfaces are created, iii) Followed by the creation of a roadm-
connection object.  

3. DISAGGREGATED NETWORK VIRTUALIZATION 

 

	Fig.	7.  Sample virtual optical networks on top of a shared common 
infrastructure for a given resource partition.  

The need to provide network abstraction and virtualization has 
emerged as a key requirement for operators [16], as transport networks 
evolve.  Tenants are given abstracted topology views of the physical 
underlying network and are allowed to utilize and independently 
control allocated virtual network resources as if were real (see Fig. 7).  
Multiple deployment models are possible, in which the granularity level 
of control given to tenants can vary, ranging from simple static 
allocation to the allocation of virtual mesh network topology with 
dynamic customer control.  

Generally, virtualizing an optical network can be performed using a 
combination of a given device support (that is, hardware support) 
and/or the use of a virtualization layer (commonly referred to as 
hypervisor) that extends or emulates such support. This, in turn, can be 
supported at the device level, at the SDN controller level, or both. 

A. SDN Controller based Network Virtualization 

A common approach for network virtualization relies on 
implementing the abstraction, isolation and lifetime management of the 
Optical Virtual Networks at the SDN controller level. This is motivated, 
in part, by the centralized nature of SDN Controllers, in which partitions 
or views of the network topology can be exported to specific clients 
based on configuration and policies, and the controller implements the 
logic to map from OVN instances to the underlying physical 
infrastructure. In other words, the controller implements a network	
hypervisor offering isolated network views to customers or tenants. 

For example, the IETF Abstraction and Control of Traffic-Engineering 
Networks (ACTN) architecture [17], defines a hierarchical SDN based 
solution spanning multiple SDN Controlled domains and remaining 
compatible in supporting legacy heterogeneous transport network 
control/management technologies (e.g., GMPLS/ASON, PCE, 
NMS/EMS) as shown in [16].  In this setting, the ACTN defines the 
requirements, use cases, and architectural elements, relying on the 
concepts of network and service abstraction, detaching the network and 
service control from the underlying data plane. The architecture 
encompasses Physical Network Controllers (PNCs), responsible for 
specific technology and administrative domains, orchestrated by Multi-
Domain Service Coordinator (MDSC), which, in turn, enables underlay 
transport resources to be abstracted and virtual network instances to 
be allocated to customers, under the control of a Customer Network 
Controller (CNC) [19].  

Another relevant example is found in the TAPI model family. In 
addition to common models related to topology, connection 
management and path computation, more advanced models allow the 
management of virtual networks within a specific TAPI client / server 

OpenROADM 
Device

DEG

DEG

D
E
G

DEGD
EG

DEG

SRG

D
EG

OpenConfig
Terminal 
Device

DEG

SR
G

DEG

D
EG

DEG

DEG

INFRASTRUCTURE
LAYER

Client
Port

Line 
Port

DEG

D
EG

VON
LAYER

OpenROADM 
Device

DEG

D
EG

SRG
D
EG

OpenConfig
Terminal 
Device

SR
G

D
EG

Clien
t
Port

Line 
Port

VON
LAYER

OpenROADM 
Device

DEG

D
EG

SRG

D
EG

OpenConfig
Terminal 
Device

SR
G

D
EG

Clien
t
Port

Line 
Port

VON
LAYER

OpenROADM 
Device

DEG

D
EG

SRG

D
EG

OpenConfig
Terminal 
Device

SR
G

D
EG

Client
Port

Line 
Port



context [¡Error!	No	se	encuentra	el	origen	de	la	referencia.].  The 
abstraction offered by the TAPI models and the Common Information 
Model (CIM) elements enables to virtualize the network, to support 
Virtual Transport Network services offering dynamically controllable 
virtual resources e.g., connecting remote sites of large customers. 

B. Device based Network Virtualization and Device Hypervisor 

A complementary approach relies on supporting virtualization 
directly at the device level. A key advantage is that with full virtualization 
support, the SDN controller and other functional elements may operate 
without change, unaware of whether they operate on virtualized of 
physical devices. However, it is worth noting that the use of a device-
based virtualization mechanism does not exclude the use of a controller- 
based approach: we define the OVN	 manager as a functional 
component that instantiates and controls the lifetime of the OVNs. As 
such, it can be operated independently and deployed as part of the 
network operator operation support system (OSS), or as part of an SDN 
controller in an integrated solution. The second key component in the 
proposed architecture is the OpenROADM	hypervisor. Conceptually, 
it behaves like a hypervisor in the computing domain: a hypervisor is a 
functional element (e.g. computer software, firmware or hardware) that 
instantiates and enables the controlled execution of virtual machines – 
referred to as guests – running over a common physical server  - 
referred to as host – and presents the guest operating systems with a 
virtual operating platform. Multiple instances may thus share the 
virtualized hardware resources.  

 

 

Fig.	8.  Basic architecture of a device hypervisor  

An OpenROADM hypervisor allows multiple virtual ROADM devices 
to behave independently and to be controlled by a dedicated SDN 
Controller using the same open interfaces and protocols as the physical 
device (see Fig. 8). A hypervisor partitions a device according to its 
standardized device data model, into multiple virtualized devices (e.g., 
virtualized ROADMs). This hypervisor ensures isolation and acts as a 
(restricted) NETCONF/YANG proxy to the physical device, so a per-OVN 
dedicated controller can control the OVN independently. 

The role of the ROADM hypervisor is to coordinate access to the 
underling physical device agent, so each virtual device only sees and 
operates on a partial (restricted) view of the data model configuration 
and operational datastore.  

 

	Fig.	9.  Example of a 3-DEG, 2-SRG ROADM device corresponding to the 
physical ROADM device. 

There are multiple degrees of freedom in defining an 
OVN/partitioning the devices: assigning a device’s degrees (DEG) and 
SRGs, assigning the internal and external ports as well as internal and 
physical links and partitioning the usable spectrum. For example, Fig. 9 
shows an example illustrative device and Fig. 10 a possible partition of 
such OpenROADM device into 2 logical virtualized ROADMs. 

   

 Fig.	10.  Two virtualized ROADMs corresponding to a given partition of 
the underlying device. The left one is a 2-DEG, 1-SRG and the right one is 
a 1-DEG, 1-SRG one. 

C. Optical Virtual Network Lifetime management 

The OVN manager processes a request for an OVN instance and 
partitions the devices accordingly; configuring the hypervisors and, in 
our specific demonstration allocating a new SDN controller instance, 
configured to connect to the virtual devices. During the lifetime of the 
OVN, such SDN instance can provide end-to-end connectivity upon 
request between (virtualized) transceivers. 

For each active partition, the OVN manager instantiates a virtualized 
NETCONF server and creates, dynamically, a running datastore 
encompassing only the elements included in the partition. Such XML 
encoded datastore is provisioned in the virtualized server. To illustrate 
the concept, consider Fig. 11: the tree on the left represents the 
configuration and operational data of a physical device. The one on the 
right for a virtualized ROADM only encompassing a subset of circuit 
packs (e.g. CP2), ports (port2, port3), degrees (DEG2, DEG4) and SRG1. 

OVN/Slice (B)
SDN Controller

SDN Agent
NETCONF Server

Sliced / 
Virtual 
OpenROADM 
Device

OVN/Slice (A)
SDN Controller

SDN Control of the
Virtualized Infrastructure

Device Hypervisor

OpenROADM 
Device

DEG

DEG

D
E
G

SR
G

DEG

DEG

D
E
G

SR
G

SDN Agent
NETCONF Server

SDN Agent
NETCONF Server

NETCONF Server

Device

Hypervisor

Virtualized
NETCONF Server

Virtualized
NETCONF Server

Physical Device Data Model

Virtual Device Data Model

SRG1‐AMP‐TX

SRG1‐AMP‐RX

SRG1‐CS

SRG1‐CS‐IN1 SRG1‐CS‐OUT1

SRG1‐WSS

DEG1
DEG1

DEG1‐AMP‐RX

DEG1‐AMP‐TX

DEG1‐WSS

SRG2‐AMP‐TX

SRG2‐AMP‐RX

SRG2‐CS

SRG2‐CS‐IN1 SRG2‐CS‐OUT1

SRG2‐WSS

DEG2

DEG3ExpLink12
ExpLink13

Dlink11
Dlink12

ExpLink21

ExpLink31ALink11
ALink21

OpenROADM 
Device

SRG1‐AMP‐TX

SRG1‐AMP‐RX

SRG1‐CS

SRG1‐CS‐IN1 SRG1‐CS‐OUT1

SRG1‐WSS

DEG1
DEG1

DEG1‐AMP‐RX

DEG1‐AMP‐TX

DEG1‐WSS

SRG2‐AMP‐TX

SRG2‐AMP‐RX

SRG2‐CS

SRG2‐CS‐IN1 SRG2‐CS‐OUT1

SRG2‐WSS

DEG2

DEG3ExpLink12
ExpLink13

Dlink11
Dlink12

ExpLink21

ExpLink31ALink11
ALink21

OpenROADM 
Device

SRG1‐AMP‐TX

SRG1‐AMP‐RX

SRG1‐CS

SRG1‐CS‐IN1 SRG1‐CS‐OUT1

SRG1‐WSS

DEG1
DEG1

DEG1‐AMP‐RX

DEG1‐AMP‐TX

DEG1‐WSS

SRG2‐AMP‐TX

SRG2‐AMP‐RX

SRG2‐CS

SRG2‐CS‐IN1 SRG2‐CS‐OUT1

SRG2‐WSS

DEG2

DEG3

ALink22

OpenROADM 
Device

DLink22



 

Fig.	11.  Data nodes reflecting the physical device composition (left) and 
the virtualized one (right) as per a given partition. 

From a workflow perspective, the process is as follows: each physical 
device is equipped with a NETCONF server/agent and a hypervisor. The 
hypervisor initially retrieves the operational and confirmation data of 
the device running datastore. Upon request, the OVN manager creates 
an OVN, translating the network request into a set of partitions of the 
individual devices. For each device partition, the manager allocates, via 
the hypoevisor) a dedicated virtualized NETCONF agent with a 
dynamically created datastore that reflects the partition and partial 
view corresponding to the virtualized device. 

SDN Controllers interact with agents running in dedicated 
containers. NETCONF operations are processed by the NETCONF 
frontend (over the partial view of the device), and forwarded to the 
hypervisor.  

 

 
(a) 

 
(b) 
 

Fig.	12.  Workflow to instantiate a OVN upon request from the Operator 
(a) and subsequent NETCONF operations from the SDN Controller (b) 

D. Isolated (in‐slice) service provisioning 

As stated, during the lifetime of the OVN, the manager provides the OVN 
SDN controller with the credentials of the (virtual) devices, so NETCONF 

sessions are established and the devices’ capabilities discovered 
(tunability and switching capabilities). NMC are set up upon request 
between two terminal devices, with terminal devices client ports are 
mapped to Service Interface Points (SIPs).  

As stated in Sect 2.C , this triggers a routing and spectrum assignment 
process that finds the k-shortest path between the devices and performs 
first fit spectrum allocation. For the Terminal Device, a logical channel 
association is instantiated within the device between a client 
(transceiver) port and an optical channel component bound to the line 
port of the device. For each of the OpenROADM devices across the path, 
a ROADM internal connection is requested. Section 6 details the 
procedures for an express connection as defined by the OpenROADM 
MSA. Fig. 12 macroscopically illustrates both the OVN instantiation 
process, as well as the in-slice service provisioning process. 

4. IMPLEMENTATION ASPECTS 

A. SDN Controller TAPI North Bound Interface 

The implementation of the TAPI 2.1 NBI interface allowing the query 
of the topology and the provisioning of connectivity services (i.e., the 
TAPI topology and connectivity models) relies on the existing ONOS 
Dynamic Configuration Subsystem (DCS). In short, the DCS allows YANG 
service models to be compiled and registered in the ONOS SDN 
controller automatically, in such a way that the underlying data nodes 
and Remote Procedure Calls (RPCs) can be accessed  by TAPI clients 
(e.g. network orchestrators or end users) using a compliant RESTCONF 
implementation. SDN applications can register for events in the 
Dynamic Configuration subsystems such as, for example, the create‐
connectivity‐service RPC that encompasses the endpoints of a 
point-to-point network media channel request [21]. Such endpoints 
refer to SIPs that are exported to TAPI clients in the TAPI context, which 
also includes a detailed topological view of the (virtualized, 
disaggregated) optical network, since Topological elements are added 
to the DCS dynamically upon discovery. Internally, the TAPI 
Connectivity Service Request is mapped to an Optical Connectivity 
intent, using ONOS intent framework. Optical Connectivity Intents 
reflect desired connectivity between two transceivers client ports. A 
path meeting the optical constraints is computed and the subsequent 
resource allocation is translated into per-device configuration 
instructions, using a generalized model of flow, as detailed next. 

B. SDN Controller OpenROADM and OpenConfig drivers 

The integration of OpenConfig terminal devices as well as OpenROADM 
devices into the ONOS SDN Controller involved the development of 
specific drivers in order to implement the abstracted Behaviours within 
ONOS optical network model. A Behaviour models a particular 
capability of abstracted interface of a device, which is used by the core 
ONOS components from an abstracted perspective.  

In our particular case, both device drivers implement a set of key 
behaviours within the ONOS Optical Model [22], providing the required 
functionality using the NETCONF transport protocol.  

The DeviceDescriptionDiscovery behavior is implemented in 
order to retrieve data about the device (identifiers, number of ports, 
port attributes, etc.) and allow the dynamic discovery of nodes, ports 
and links (for the specific case of OpenROADM external links).  ONOS 
core systems are able to register the device into the DeviceManager and 
into the underlying Optical layer topology. 

The LambdaQueryBehaviour is implemented in order to allow 
other subsystems to query which nominal central frequencies are 
available at a given device port, thus affecting end-to-end routing and 
Spectrum Assignment.  

org‐openroadm‐device

DEG1
DEG2
DEG3
DEG4
DEG5

circuit‐packs

ports

CP1

CP2
port1
port2
port3
port4

CPN

physical‐, internal‐, external‐links

degree

interfaces

SRG1
SRG2
SRGN

srg

connections

Physical Device Data Model org‐openroadm‐device

DEG2
DEG4

circuit‐packs

CP2

port2
port3

physical‐, internal‐, external‐links

degree

interfaces

SRG1
srg

connections

Virtual Device Data Model

Retrieve Operational and 
Configuration Data

ROADM
Hypervisor

<ok>

OVN 
Manager

For each device in the OVN
Create vROADM Partition  Allocate Container 

for OVN (A)

Virtualized ROADM
docker container

NETCONF ROADM
Agent (Physical)

SDN 
Control (A)

SRG1‐AMP‐TX

SRG1‐AMP‐RX

SRG1‐CS

SRG1‐CS‐IN1 SRG1‐CS‐OUT1

SRG1‐WSS

DEG1
DEG1

DEG1‐AMP‐RX

DEG1‐AMP‐TX

DEG1‐WSS

SRG2‐AMP‐TX

SRG2‐AMP‐RX

SRG2‐CS

SRG2‐CS‐IN1 SRG2‐CS‐OUT1

SRG2‐WSS

DEG2

DEG3ExpLink12
ExpLink13

Dlink11
Dlink12

ExpLink21

ExpLink31ALink11
ALink21

OpenROADM 
Device

OVN Request
(A)

Operator

Declare Virtualized device 
(REST API)  

<ok>

Retrieve Operational and 
Configuration Data

NETCONF <hello>

ROADM
Hypervisor

vROADM
Docker container

SDN 
Control (A)

NETCONF <hello>

SDN 
Control (B)

vROADM
Docker container

NETCONF <hello>

<edit‐config> on 
the partial view

<edit‐config>
<edit‐config> to 
the physical device



Finally, the implementation of the FlowRuleProgrammable 
behavior maps high level operations defined in terms of Flow Rules 
(getFlowEntries, applyFlowRules). Flow Rules define a set of criteria in 
order to match traffic and a set of actions to forward that traffic. They 
are involved in the management of device cross-connections and are 
translated into NETCONF edit-config operations to create the data node 
entries in the OpenROADM device.  

The implementation of the driver can be obtained in [23].  

C. OpenROADM hypervisor 

The OpenROADM hypervisor software is implemented in C++ using the 
ConfD framework [24], a management agent software for network 
elements. It provides a compliant NETCONF/ÝANG server 
implementation.  When the server is configured, OpenROADM v2.2 
YANG models are compiled into ConfD and the software is responsible 
for common aspects such as NETCONF support, data model validation, 
or integrity checks. A “host” instance of ConfD runs allowing direct 
access to the physical device, mapping NETCONF operations to 
hardware configuration operations, and uses a NETCONF datastore that 
corresponds to the physical components of the underlying device. 	

Next, a dedicated instance of ConfD is executed on a per virtual device 
basis (i.e., “guest” instances), with a NETCONF datastore constructed by 
the OVN manager as a partial view of the device, as detailed in Section 
3.C. The pre-loaded configuration and operational data nodes 
correspond to the intended partition. ConfD behaves as a NETCONF 
agent/server frontend. Configuration operations are reflected in the 
virtualized ROADM datastore and then processed as events by the 
hypervisor, which forwards the operation to the physical device 
NETCONF server. The MAAPI and CDB application programming 
interfaces are used in this regard: a CDB socket is used to register 
subscriptions for data nodes of interest, and the library offers an API to 
read and write operational and configuration data. In particular, the 
agent processes asynchronous notifications corresponding to the 
creation, update or removal of data nodes corresponding to 
OpenROADM interfaces and roadm-connections., and NETCONF 
messages are sent to the host instance. 

Consequently, a NETCONF client that operates on a virtualized 
ROADM can only see the partial view as defined by the datastore 
managed by its dedicated instance, ensuring isolation between different 
instances. 

6. EXPERIMENTAL DEMONSTRATION 

 

Fig.	13.  ONOS GUI showing the NSFNet OpenConfig/OpenROADM 
topology, with 14 nodes and 42 unidirectional links. 

For the experimental evaluation, we consider an emulated NSFNet 
topology that corresponds to the physical infrastructure. The 
considered topology encompasses 14 OpenROADM devices with 42 
unidirectional links (corresponding to external-links in the 
OpenROADM device model), with each node having 1 SRG. Fig. 13 

shows the topology from the ONOS GUI perspective.  To illustrate 
potential partitions that can be created, Table 1 shows the number of 
main elements form the OpenROADM device model for the NSFNet as 
well as for simple 3 and 5 node partitions, directly obtained from the 
NETCONF running datastores. 

OpenROADM topology  NSFNET  3node  5node 

Number of Nodes  14  3  5 

Number of Ports  1880  330  552 

Internal Links  1624  288  480 

Physical Links  312  42  74 

External Links  42  6  10 

Circuit Packs  270  42  72 

SRGs  14  3  5 

DEGs  42  6  10 

Tab. 1. Number of OpenROADM elements in NSFNet and basic 
partitions. 

The experimental validation involves the creation of a subnet (OVN 
instance) in which a partition is defined selecting 10 nodes and a subset 
of the OpenROADM degrees, resulting on a sub-graph of the original 
topology. When the OVN is instantiated, virtualized agents running 
NETCONF servers with a partial view of the device are instantiated as 
Docker containers. Using the MAC VLAN Docker networking drivers, 
virtualized agents belonging to the same OVN instance are given IP 
addresses from the same (private) subnet, which are reachable from the 
per OVN dedicated ONOS SDN Controller instance. JSON encoded files 
are generated by the OVN manager (see Fig. 14) and uploaded to the 
SDN Controller using REST interfaces, so NETCONF sessions can be 
established by the controller. 

 
"netconf:11.1.1.128:830": { 

     "basic": { 
             "driver": "openroadm", 
             "name" : "ROADM", 
             "locType" : "geo", 
                   "latitude" : "45.8", 
                   "longitude" : "9.57" 
      }, 
 
      "netconf": { 
              "ip": "11.1.1.128", 
              "port": "830", 
              "username": "username", 
              "password": "password", 
              "connect-timeout": 20, 
              "reply-timeout": 25, 
              "idle-timeout": 30000 
      } 

} 

Fig.	14. Sample JSON encoding used to register a virtualized logical 
device to the SDN controller via a dedicated REST interface. 

Once the topology of the OVN has been discovered by the OVN SDN 
controller, the user (tenant) of the OVN can request the provisioning of 
connectivity services. For this, a TAPI request is sent involving two 
endpoints (SIPs) of the OVN. A  RESTConf Remote Procedure Call (RPC) 
for the TAPI connectivity service encompasses the required information 
objects (Relevant photonic media layer, connectivity service endpoints, 
involved SIPs, requested capacity in GHz, etc.).  Fig. 15 shows the 
Wireshark capture of the POST operation for the RPC. 



 

Fig.	15.  Wireshark capture of TAPI NBI Connectivity Request with the 
Connectivity Service RPC create-connectivity-service and endpoints. 

As stated earlier, the SDN Controller ends up constructing flow rules 
that trigger the creation of ROADM connections on the virtualized 
devices. To provide an example, let us consider the provisioning of a 
unidirectional express connection supporting a 50 GHz signal centered 
at 190.7 GHz from degree 1 to degree 4. Given the fact that Optical 
Transmission Section (OTS) and Optical Multiplex Section (OMS) 
interfaces do not change dynamically, we can assume that such 
interfaces are pre-configured at the ROADM degrees. The actual 
provisioning thus involves the following steps: i) the creation of Media 
Channel (MC) interfaces supported over the OMS interfaces (by 
convention named e.g. MC-TTP-DEG1-TTP-RX-190.7) with a min-freq: 
190.675 and max-freq: 190.725.	 ii) The creation of Network Media 
Channel (NMC) interfaces over the previously created MC interface, 
specifying a center frequency and slot width, which induces Connection 
Termination Points (CTPs). iii)  The creation of the ROADM internal 
unidirectional connection, established between these two logical CTP 
interfaces i.e., from the interface NMC‐CTP‐DEG1‐TTP‐RX‐190.7  to 
NMC‐CTP‐DEG4‐TTP‐TX‐190.7. The whole process is illustrated in 
Fig. 16; it is worth noting that the logical operation of constructing a 
cross-connection involves O(5) NETCONF edit‐config messages for 
an express connection.  

 

Fig.	16.  Sequence of NETCONF edit‐config operations to create a 
connection, including the creation of supporting MC and NMC 
interfaces. 

In our specific scenario, the NMC is set up across 4 virtualized 
ROADMs, and from the point of view of the controller, the process is 
completed in O(100) ms, as seen in the Wireshark capture (Fig. 17).  Let 
us point out that the underlying physical devices are emulated and the 
service provisioning delay does not take into account the hardware 
configuration latency. This latency can be of the order of 
seconds/minutes, and largely dominates the end-to-end metric. From 
this perspective, the latency introduced by the control plane is almost 
negligible.  

 

Fig.	 17.  (Partial) Wireshark capture of NETCONF/SSH exchanges 
between controller and agents, for the provision of a Network Media 
Channels over an OVN involving 4 out of the 10 node- NSFNet topology. 

 
Finally, a second metric of interest is the control plane throughput. Fig. 
18 shows the I/O plot of traffic in packets per second, including not only 
the NETCONF messages but also the SSH/TCP overhead. In any case, the 
bandwidth capacity required to support NETCONF configuration 
operations is relatively low.	

 

Fig.	18.  Wireshark I/O plot in pps from the SDN Controller for the OVN, 
showing the traffic variations during the O(100) ms of the provisioning 
window, 

Creation of 
Interfaces

vROADM(1)
Agent

Creation of 
Connection

SDN 
Controller

MC in, MC out

NMC in, NMC out

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message‐id="55">

<edit‐config>

<target>

<running/>

</target>

<config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<org‐openroadm‐device xmlns="http://org/openroadm/device">

<interface nc:operation="merge">

<name>MC‐TTP‐DEG1‐TTP‐RX‐190.7</name>

<description>Media‐Channel</description>

<type xmlns:openROADM‐if="http://org/openroadm/interfaces">

openROADM‐if:mediaChannelTrailTerminationPoint</type>

<administrative‐state>inService</administrative‐state>

<supporting‐circuit‐pack‐name>DEG1‐AMPRX</supporting‐circuit‐

pack‐name>

<supporting‐port>DEG1‐AMPRX‐IN</supporting‐port>

<supporting‐interface>OMS‐DEG1‐TTP‐RX</supporting‐interface>

<mc‐ttp xmlns="http://org/openroadm/media‐channel‐interfaces">

<min‐freq>190.675</min‐freq>

<max‐freq>190.725</max‐freq>

</mc‐ttp>

</interface>

</org‐openroadm‐device>

</config>

</edit‐config>

</rpc>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message‐id="56">

<edit‐config>

<target>

<running/>

</target>

<config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<org‐openroadm‐device xmlns="http://org/openroadm/device">

<interface nc:operation="merge">

<name>MC‐TTP‐DEG1‐TTP‐RX‐190.7</name>

<description>Media‐Channel</description>

<type xmlns:openROADM‐if="http://org/openroadm/interfaces">

openROADM‐if:mediaChannelTrailTerminationPoint</type>

<administrative‐state>inService</administrative‐state>

<supporting‐circuit‐pack‐name>DEG1‐AMPRX</supporting‐circuit‐

pack‐name>

<supporting‐port>DEG1‐AMPRX‐IN</supporting‐port>

<supporting‐interface>OMS‐DEG1‐TTP‐RX</supporting‐interface>

<mc‐ttp xmlns="http://org/openroadm/media‐channel‐interfaces">

<min‐freq>190.675</min‐freq>

<max‐freq>190.725</max‐freq>

</mc‐ttp>

</interface>

</org‐openroadm‐device>

</config>

</edit‐config>

</rpc>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message‐id="57">

<edit‐config>

<target>

<running/>

</target>

<config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<org‐openroadm‐device xmlns="http://org/openroadm/device">

<interface nc:operation="merge">

<name>MC‐TTP‐DEG1‐TTP‐RX‐190.7</name>

<description>Media‐Channel</description>

<type xmlns:openROADM‐if="http://org/openroadm/interfaces">

openROADM‐if:mediaChannelTrailTerminationPoint</type>

<administrative‐state>inService</administrative‐state>

<supporting‐circuit‐pack‐name>DEG1‐AMPRX</supporting‐circuit‐

pack‐name>

<supporting‐port>DEG1‐AMPRX‐IN</supporting‐port>

<supporting‐interface>OMS‐DEG1‐TTP‐RX</supporting‐interface>

<mc‐ttp xmlns="http://org/openroadm/media‐channel‐interfaces">

<min‐freq>190.675</min‐freq>

<max‐freq>190.725</max‐freq>

</mc‐ttp>

</interface>

</org‐openroadm‐device>

</config>

</edit‐config>

</rpc>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message‐id="58">

<edit‐config>

<target>

<running/>

</target>

<config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<org‐openroadm‐device xmlns="http://org/openroadm/device">

<interface nc:operation="merge">

<name>MC‐TTP‐DEG1‐TTP‐RX‐190.7</name>

<description>Media‐Channel</description>

<type xmlns:openROADM‐if="http://org/openroadm/interfaces">

openROADM‐if:mediaChannelTrailTerminationPoint</type>

<administrative‐state>inService</administrative‐state>

<supporting‐circuit‐pack‐name>DEG1‐AMPRX</supporting‐circuit‐

pack‐name>

<supporting‐port>DEG1‐AMPRX‐IN</supporting‐port>

<supporting‐interface>OMS‐DEG1‐TTP‐RX</supporting‐interface>

<mc‐ttp xmlns="http://org/openroadm/media‐channel‐interfaces">

<min‐freq>190.675</min‐freq>

<max‐freq>190.725</max‐freq>

</mc‐ttp>

</interface>

</org‐openroadm‐device>

</config>

</edit‐config>

</rpc>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message‐id="62">

<edit‐config>

<target>

<running/>

</target>

<config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<org‐openroadm‐device xmlns="http://org/openroadm/device">

<roadm‐connections nc:operation="merge">

<connection‐name>NMC‐CTP‐DEG1‐TTP‐RX‐190.7‐to‐NMC…</connection‐name>

<opticalControlMode>off</opticalControlMode>

<target‐output‐power>0</target‐output‐power>

<source>

<src‐if>NMC‐CTP‐DEG1‐TTP‐RX‐190.7</src‐if>

</source>

<destination>

<dst‐if>NMC‐CTP‐DEG4‐TTP‐TX‐190.7</dst‐if>

</destination>

…



7. CONCLUSIONS 
The adoption of model driven developments, the availability of open 

data models for an increasing range of optical devices and the overall 
major softwarization trends in the scope of SDN control of optical 
networks is enabling an unprecedented degree of flexibility and efficient 
resource usage. With a unified modeling approach (e.g. relying on 
common data model languages, transport protocols such as 
NETCONF/RESTCONF) coupled to a steady increase in devices 
programmability, SDN control planes can evolve to match the 
requirements related to network sharing, virtualization and slicing, 
including ultimately empowering end users to control their allocated 
slices. This is particularly important in the scope of disaggregated optical 
networks, which are a main use case for open data models. In particular, 
we have briefly summarized the use of TAPI interfaces and 
OpenROADM device models.  

This work has addressed and demonstrated the virtualization of an 
open and disaggregated optical network, along with the provisioning of 
network media channels within a given OVN instance, relying on device 
hypervisors and standard data models. The implemented extensions to 
ONOS SDN controller for OpenConfig or OpenROADM can be used 
regardless of the infrastructure is real or virtual. The validated proof-of-
concept demonstrates the setup of a connection as an optical 
connectivity intent, largely satisfying the target values and 
demonstrating the feasibility of a model driven SDN control for a 
virtualized network. 

One of the limitations of the approach is that the actual underlying 
partition (down to Degrees, SRGS, circuit-packs, ports and optical 
spectrum) is quasi-static, bound to the lifetime of the OVN with a given 
resource is exclusively assigned to a single virtual instance. The 
extension of the approach for a more flexible resource sharing is left for 
further study. 
 
Funding	Information.  Work funded by the EC H2020 project METRO-
HAUL (761727) and the Spanish AURORAS (RTI2018-099178-BI00) 
project. 

 
Acknowledgment. We thank the members of the ONF ODTN and 
Metro-Haul projects for their insightful comments and suggestions 
concerning the OpenROADM v2.2 ONOS driver implementation as well 
as the design of the ConfD-based agent(s). 

References 
1. Next Generation Mobile Networks (NGMN) Alliance White Paper on 5G 

https://www.ngmn.org/5g‐white‐paper/5g‐white‐paper.html 
2. Li, X., Casellas, R., Landi, G. et al, “5G‐Crosshaul Network Slicing: Enabling 

Multi‐Tenancy in Mobile Transport Networks”, IEEE Communications 
Magazine, special issue on Network Slicing in 5G systems, August 2017, 
Vol. 55, No. 8, August 2017. 

3. R. Vilalta, A. Mayoral López‐de‐Lerma, R. Muñoz, R. Martínez, R. 
Casellas, “Optical Networks Virtualization and Slicing in the 5G era”, in 
Optical Fiber Communications Conference (OFC2018), 11‐15 March 
2018, San Diego, CA, USA 

4. R. Nejabati, E. Escalona, S. Peng and D. Simeonidou, "Optical network 
virtualization," 15th International Conference on Optical Network 
Design and Modeling ‐ ONDM 2011, Bologna, 2011, pp. 1‐5.Optical 
Network Virtualization 

5. Y. Li, X. Chen, N. Hua, and X. Zheng, "A Novel Virtual Optical Network 
Embedding Strategy for Optical Network Virtualization," in Advanced 
Photonics for Communications, OSA Technical Digest (online) (Optical 
Society of America, 2014), paper NT1C.3. 

6. L. Gong and Z. Zhu, "Virtual Optical Network Embedding (VONE) Over 
Elastic Optical Networks," J. Lightwave Technol. 32, 450‐460 (2014) 

7. N. Shahriar, S. Taeb, S. Chowdhury, M. Tornatore, R. Boutaba, J. Mitra, 
M. Mahdi, “Achieving a Fully‐Flexible Virtual Network Embedding in 
Elastic Optical Networks”, in  INFOCOM Conference 10.1109/ 
INFOCOM.2019.8737601. 

8. E. Riccardi, P. Gunning, O. González de Dios, et al., “An Operator view on 
the Introduction of White Boxes into Optical Networks”, J. Lightwave 
Technol., 36, (15), pp. 3062‐3072 (2018). 

9. METRO‐HAUL: High bandwidth, 5G Application‐aware optical network, 
with edge storage, compUte and low Latency, http://metro‐haul.eu 

10. The Open Disaggregated Transport Network project, ONF, 
https://www.opennetworking.org/odtn/ 

11.  OpenConfig project and data models http://openconfig.net and 
https://github.com/openconfig/public/tree/master/release/models 

12.  The Open ROADM Multi‐Source Agreement (MSA) 
http://www.openroadm.org 

13. R. Casellas, A. Giorgetti, R. Morro, R. Martínez, R. Vilalta, R. Muñoz, 
“Enabling Network Slicing Across a Disaggregated Optical Transport 
Network “, in Optical Fiber Communications Conference (OFC2019), 3‐7 
March 2019, San Diego, CA (USA). 2019. 

14. Open Networking Foundation (ONF), Transport API (TAPI) overview 
https://www.opennetworking.org/wp‐content/uploads/2017/08/TAPI‐
2.0‐Updates‐Overview.pdf 

15. Open Networking Foundation (ONF), Transport API project 
https://wiki.opennetworking.org/display/OTCC/TAPI  

16. R. Casellas, R. Martinez, R. Vilalta, R. Munoz,  “Control, management, 
and orchestration of optical networks: Evolution, trends, and 
challenges,” J. of Lightwave Technol., vol. 36, (7), pp. 1390–1402 (2018) 

17. D. Ceccarelli, Y., Lee, editors, “Framework for Abstraction and Control 
of TE Networks (ACTN)”, IETF RFC8453, august 2018. 

18. R. Casellas, R. Vilalta, R. Martínez, R. Muñoz, “Experimental Validation 
of the ACTN architecture for flexi‐grid optical networks using Active 
Stateful Hierarchical PCEs”, in Proc. 19 International Conference on 
Transparent Optical Networks (ICTON2017), 2‐6 July, 2017, Girona, 
Spain, July 2017. 

19. Y. Lee, D. Dhody, editors, “A YANG Data Model for VN Operation”, 
draft‐ietf‐teas‐actn‐vn‐YANG‐05, work in progress (2019) 

20. ONF TAPI Virtual Network YANG model, 
https://github.com/OpenNetworkingFoundation/TAPI/blob/develop/Y
ANG/tapi‐virtual‐network%402019‐03‐31.YANG 

21. ODTN Service Application ONOS Release 2.2 
https://github.com/opennetworkinglab/onos/tree/master/apps/odtn 

22. ONOS optical Information Model (Wiki) 
https://wiki.onosproject.org/display/ONOS/Optical+Information+Mod
el#OpticalInformationModel‐DisaggregatedROADMmodel 

23. ODTN OpenROADM v2.2 NetConf drivers. 
https://gerrit.onosproject.org/#/c/22106/ 

24. ConfD, management agent software framework for network elements 
https://www.tail‐f.com/confd‐basic Accessed: 2019‐4‐12. 
 

 

Ramon	Casellas	(SM’12) graduated in 1999 from UPC, Barcelona and 
from the ENST, Paris, with an Erasmus student exchange program 
grant. He completed a PhD degree in 2002 and worked at the ENST as 
an Associate Professor. In March 2006, he joined the CTTC Optical 
Networking Dept., where he is currently holding a Senior Researcher 
position. His research interest areas include Traffic Engineering; Control 
and Management of Optical Transport Networks (GMPLS/PCE, SDN 
and NFV).   He has been involved in several international, national and 
industrial R&D projects and has co-authored 5 book chapters, over 200 
journal and conference papers and 5 IETF RFCs.  He is an ONF 
contributor and member of the ONF ODTN project. 

 
Alessio	Giorgetti received the Ph.D. degree from Scuola Superiore 

Sant’Anna (SSSA), Pisa, Italy, in 2006. In 2007, he has been visiting 



scholar at Centre for Advanced Photonics and Electronics, University of 
Cambridge, UK. Currently, he is an Assistant Professor at SSSA. His 
research interests include: optical network architecture and control 
plane, industrial network design, software defined networking. He is 
author of more than 100 publications including international journals, 
conference proceedings, and patents. 

 
Roberto	Morro received a Dr. Ing. degree in electronic engineering 

from University of Genoa (Italy) in 1988. After a six year experience with 
Marconi as a testing engineer, he joined TIM (at that time CSELT) in 
1995 where he is currently working in the technology evolution and 
innovation unit. He has been actively working in several European 
funded projects and in the related technology transfer inside the TIM 
group. His research interests include network control, SDN, NFV, 
focusing especially on multi-layer (IP over optics), multi-domain and 
traffic engineering aspects. 

 
Ricardo	 Martínez	 (SM’14) received Ph.D. degree in 2007 in 

telecommunications engineering, from the Universitat Politècnica de 
Catalunya, Barcelona, Spain. He has been actively involved in several 
public-funded (national and European Union) research and 
development projects as well as industrial technology transfer projects. 
Since 2013, he is Senior Researcher of the Communication Networks 
Division at CTTC, Castelldefels, Spain. His research interests include 
service and resource (cloud and network) orchestration, control and 
network management architectures for packet and optical transport 
networks in multiple network segments. 

 
Ricard	 Vilalta	 (SM’17) has a telecommunications engineering 

degree (2007) and Ph.D. degree (2013), at UPC, Spain. He is senior 
researcher at CTTC, in the Communication Networks Division. His 
research is focused on SDN/NFV, Network Virtualization and Network 
Orchestration. He has been involved in international, EU, national and 
industrial research projects, and published more than 200 journals, 
conference papers and invited talks. He is also involved in 
standardization activities in ONF, IETF and ETSI. 

 
Raül	Muñoz	(SM'12) graduated in telecommunications engineering 

in 2001 and received a Ph.D. degree in telecommunications in 2005, 
both from UPC-BarcelonaTech, Spain. He is Head of the Optical 
Networks and Communications Networks Division Manager at CTTC 
(Barcelona, Spain). He has coordinated the H2020-MSCA-ITN ONFIRE 
project and the EU-Japan FP7-ICT STRAUSS project. He has published 
over 250 journal and international conference papers. His research 
interests include control and service management architectures (SDN, 
NFV, network slicing) for disaggregated optical/packet transport 
networks with edge/cloud computing. 


