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Abstract—Automation of disassembly processes in electronic
waste recycling is progressing but hindered by the lack of
automated procedures for screw detection and removal. Here
we specifically address the detection problem and implement a
universal, generalizable, and extendable screw detector which
can be deployed in automated disassembly lines. We selected
the best performing state-of-the-art classifiers and compared
their performance to that of our architecture, which combines a
Hough transform with a novel integrated model of two deep
convolutional neural networks for screw detection. We show
that our method outperforms currently existing methods, while
maintaining the high speed of computation. Data set and code
of this study are made public.

Index Terms—screw detection; object detection; automation;
autonomous robots; disassembly; recycling

I. INTRODUCTION

Disassembly of electronic devices is a multi-million dollar

industry, because of the short life cycle of the current products,

which leads to massive amounts of valuable raw material when

recycling. The (questionable) trend to increase replacement

frequency of electronic devices, such as computers, storage

devices, PCBs, etc., this industry is set to grow even further.

Electronic products are, thus, usually discarded before their

materials degrade. These complex End-of-Life (EOL) products

contain a broad spectrum of materials including valuable met-

als such as silver and copper as well as rare earth metals. When

considering only Japan, in their recycling plants currently there

are an estimated 300,000 tons of rare earths stored in unused

electronics [1]. In France, the Rhodia group is setting up two

factories, in La Rochelle and Saint-Fons, that will produce

200 tons of rare earths a year from used fluorescent lamps,

magnets and batteries [2]. Therefore, recovery of materials in

electronic EOL products is a highly viably business.

Economical reasons are definitely not the only ones for

companies and governments investing in increasing the ef-

ficiency of recycling processes. Studies like [3] show that

recycling processes are either manual or when fully automated

the most common way to recycle materials follows the ”crush

and separate” paradigm, where the to-be-recycled product is

first ground down to small pieces from which the raw materials

are then extracted using physico-chemical methods. However,

some electronic devices, which arrive to recycling plants,

such as GSM amplifier boxes, contain hazardous elements

Fig. 1. We present a universal, extendable, RGB based screw detection scheme
which is engineered for automated disassembly tasks. Our scheme uses Hough
Transform and an integrated model of two deep neural networks. Blue squares
indicate possible candidates, while green circles represent the final prediction
of screws.

(like Beryllium in the case of GSM amps.). Elements like

these represent a massive danger to health and environment.

Therefore ”crush and separate” paradigm is not possible in

such cases and most of the times human workers have to (pre-

)disassemble those with a remaining danger of accidents even

in spite of best protective actions. This problem is amplified

in countries with less strong health and safety standards.

This shows that also health&safety as well as environmental

protection render strong incentives for improved automation

in recycling.

Due to many electronic device variants, there is an urgent

need to find a generic solution for automated disassembly, and

primarily a generic solution to detect the most essential part of

any device when it comes to disassembly: screws. In this paper,

a visual screw detection scheme based on the combination of

deep learning methods empowered with classical computer vi-

sion methods is proposed. The proposed scheme uses the well

known Hough transform to generate screw-candidates, which

are then filtered by our integrated model, which combines two

deep neural networks. The scheme can account for any type
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of screw as long as the user collects enough data for training.

Contrary to state-of-the-art techniques, which require users to

find specific datasets online, we let users to create their own

dataset, given the device. This eliminates the trouble of finding

datasets for specific screw types, and ensures high accuracy for

our network. Thus, one main approach of this paper focuses

on fusion of features acquired from classical computer vision

methods and the deep learning model to detect the screws with

the dataset, which is collected by the user in a semi-automated

way.

We examine the performance of our proposed scheme

in different situations and the extent of generalization for

effective automation and robotics usage in disassembly. For

our experiments, we have collected in total 10000 images of

screws as positive samples as well as non-screw artifacts (i.e.,

holes, stickers, PCB parts, etc.) as negative samples. Data and

code are currently being released to facilitate future research.

II. RELATED WORK

Automated disassembly has been researched for a while now

[4]–[6] and there are some schemes [7]–[11] for automating

certain processes. However, none of the proposed schemes

is actually offering a generalizable, extensible, and universal

solution of the screw detection problem. Various algorithms

have been proposed for screw detection as a part of automated

disassembly strategies. Most of these were either too much

model-dependent; meaning screw-specific (i.e. only Torx8) or

device-specific (i.e., only electric motor screws) [9], [12] or

they were extremely brittle due to the fact that the methods

they used were highly dependent on classical computer vision

methods, which are easily affected by a slight change of

illumination [13]. Also, unlike methods like [9], we do not

require a depth sensor (i.e., RGB-D camera) to conduct the

detection.

Another interesting attempt was conducted by [13]. The

authors tried to perform screw detection using template match-

ing on metal ceiling structures for dismantling and successful

reuse of light steel gauges. In this scheme, a hierarchical vision

system detects the light steel gauge first and then uses multiple

template matching to detect screws. This very method also has

a very obvious shortcoming: the method depends on a fixed

template and therefore it cannot generalize. Also, back then,

a light steel gauge had only one type of screw, but there is no

guarantee that it will stay like this in the future. Changing the

template is tedious and non-desirable and, thus, this method is

highly specific and it also cannot address other metal structures

or E-Waste devices.

One work, which took our attention, focuses on the disas-

sembly of the electric vehicle batteries using a robot system

[6]. Their main goal was to detect M5 bolts on the battery

joints. They used a Haar-type cascade classifier, which is

trained on cropped images of M5 bolts. Then, to improve

the performance of classification, false positives detected from

the classifier were added to the negative set. Although the

approach sounds quite feasible, unfortunately Haar cascades

are not performing very good when it comes to classification.

They were able to achieve only 50% detection accuracy, which

makes the method impractical for industrial use.

Another work we would like to mention focused on au-

tonomous disassembly of electric vehicle motors [9]. The

authors tried to detect screws found on electric vehicle motors

using an RGB-D sensor (Kinect) [14]. Although the proposed

algorithm is scale, rotation, and translation invariant, it heavily

relies on traditional computer vision methods such as Harris

corner detection and HSV image analysis, which are easily

affected by the lighting conditions. Another shortcoming is

the fact that they require a depth image from the RGB-D

sensor to remove false positives such as holes, which adds

computational load.

Thus, it seems that there is still a substantial lack in

generalizable, device and screw-independent methods, which

can be used in disassembly processes.

III. METHOD

In this section we explain each block found in our pipeline.

However, before doing that, we would like to inform the reader

about the setup our scheme requires. We propose a setup in

which the camera faces the device’s surface perpendicularly.

The distance between the device and the camera was 60 cm,

however, depending on the size of the device, this distance

may change. Since we worked with computer hard drives, 60

cm was a suitable height.

Our scheme has two modes: offline and online. In the

offline mode, the aim is to collect positive and negative

samples for the training of the deep neural networks that we

use. Therefore, in the offline mode, we are saving possible

candidates, which could be screws or artifacts cropped from

the camera image. These images are then to be divided by a

human into positive and negative samples (screw/non-screw)

for the training session. Fig. 2 illustrates the offline mode on

the right side.

Having collected the training data and trained the network,

the second mode of our scheme is ready to use. When

it comes to inferring of screws, as shown in Fig. 2, we

again perform the same initial function blocks, however we

differ later on and use the trained model of our network to

differentiate between positive and negative candidates relying

the the trained network. Our scheme then marks and returns

the locations of the screws seen in the image.

1) Preprocessing: Computer vision is first used to crop the

image to only the region where the device is visible. Cropping

is done in a parameter dependent way, so that – depending on

the device – users can crop the incoming image as required.

Following this, we convert the RGB image into a Grayscale

image.

2) Candidate Generation: We have analyzed the different

types of screws found in the domain of E-Waste, to make

sure that our method will cover all conventionally used screws

found in this domain. For this we assessed various electronic

devices, which can be found in myriad numbers nowadays

in E-Waste, such as computer hard drives, DVD players,

gaming consoles and many more. As expected, we found
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Fig. 2. The pipeline in our scheme is composed of offline and online stages,
which are used for training the network and then for inferring screw locations
and types using the trained model.

that almost all screws in this domain are circular, which is

the natural geometry of a screw and represents the central

feature to be used to detect a screw object. Fig. 3 illustrates

samples of screws found in E-Waste. There are also non-

circular screws manufactured but those are few and we found

no such screws in the devices mentioned above. We therefore

based our method on first finding circular structures in the

images. Obviously, not every circular structure is a screw, for

example stickers, holes, transistors, etc. exist, which are also

circular, but not screws. Still, circular structures provide us

with priors for screws and the first step of our method is to

collect those screw-candidates.

As mentioned above, in order to collect candidates, we run

our program in offline mode and rely on the Hough Transform
for candidate detection. This is a standard computer vision

method for circle detection [15] and shall not be explained

here. Different from the standard Hough Transform here we

use a version, which relies on the so called Hough Gradient (of

the OpenCV library [16]), which uses the gradient information

of the edges that form the circle. We refer the reader to the

handbook published by the creators of the aforementioned

library for further implementation details on the algorithm of

the Hough Gradient.

Fig. 3. Screw types encountered during the disassembly of various electronic
devices found in E-Waste

3) Training a Classifier: The user manually separates

screws from artifacts by which a classifier can be trained

using these positive and negative examples as training data.

We have investigated also state-of-the-art classifiers found in

the literature and we picked the six top-performing ones for

comparison at the end. These networks, to our experience,

were performing tolerably good given a not so large dataset

for a specific device-class (hard drives of any size) class. In

Fig. 4 one can see two rows depicting artifacts and screws,

respectively, taken from the hard drives. In general, however,

these types of positive and negative training samples are

observed also in other device-classes and, thus, the resulting

training set can be transferred also to other devices. In that

case, however, one has to increase the number of samples.

Fig. 4. Candidates collected by the candidate generator in the pipeline. The
top row contains artifacts and the bottom row contains screws. The devices
analyzed to obtain this were 20 different hard drives of all sizes.

There are several classifiers in the literature, which we could

investigate on our task which are Xception [17], InceptionV3

[18], ResneXt101 [19], InceptionResnetV2 [20], Densenet201

[21], Resnet101v2 [22]. These networks achieve over 93%

top-5 accuracy on the well-known Imagenet dataset [23]. In

order to further improve learning and to reduce overfitting, we

inserted a dropout layer before the last fully connected layer

of each network.

To further reduce overfitting and to come up with a model

that can generalize, we applied an additional data augmen-

tation step. There are several data augmentation operations

we applied to introduce more variety in the data. The most

important ones are normalizing the image data into a range of

[0,1] and randomly setting the brightness in the range [0.5,1.5].

The experimental evaluation each of these network on the

test data (see next) allowed us to select two to be used in our
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processing pipeline.

IV. EXPERIMENTAL EVALUATION

We conducted several experiments on the test data we col-

lected. Out of the top six state-of-the-art classifiers, we picked

the best performing two and combined them as illustrated in

Fig. 5. Below we also provide the details of the experimental

evaluation and present our justification for our decision of

combining two.

Fig. 5. Our integrated model, which is a combination of the two best
performing networks given our data and classification task.

1) Experimental Environment: For the evaluation of the

screw classifiers, we collected a dataset consisting of over

10000 samples and split it into training and test sets. The

training set includes 1491 screws and 4924 artifacts. The

test set includes 1000 screws and 3285 artifacts. We use a

computer with Intel Core i7-4770 CPU @ 3.40GHz, 16GB

of RAM with GeForce GTX Titan X graphic card to train

the classifiers. For evaluation of the performance of our screw

detector system, we collected approximately 300 hard drive

images containing over 1500 screws. We split those images

into training and test sets with ratio of 2:1. To demonstrate the

efficiency of our screw detection pipeline, we choose state-of-

the-art object detection - YOLOv3 [24], re-train on our screw

detection training set and compare results with ours.

2) Experimental Metrics: We use standard metrics for

classification evaluation. We are interested in the accuracy

of the networks we picked for our pipeline. Therefore we

calculate the accuracy of each of them as follows:

Acc = (TP + TN)/(TP + TN + FP + FN)

where TP stands for True Positives, TN for True Negatives,

FP for False Positives and FN for False Negatives. To evaluate

screw detection performance, we use Average Precision (AP)

which is calculated based on the precision-recall curve. For

details the reader may refer to [25].

3) Experimental Results: We summarize the experimental

results with regards to performance of each classifier against

the testing set in Table I.

TABLE I
EXPERIMENTAL RESULTS FOR THE CHOSEN STATE-OF-THE-ART MODELS

Model TP TN FP FN Acc
Xception 975 3244 25 41 98.5
InceptionV3 973 3262 27 23 98.8
ResneXt101 962 3260 38 25 98.5
InceptionResnetV2 965 3260 35 25 98.6
DenseNet201 897 3272 103 13 97.3
ResNetV2 943 3208 57 77 96.9
Integrated model 988 3254 12 31 99.0

From the collected results in Table 1, one can conclude

the following: All of the investigated models achieve very

high accuracy - over 96% on the testing data, with the model

InceptionV3 scoring the highest accuracy of 98.8% among

single models. We also notice that the InceptionResnetV2

model scores a very high accuracy of 98.6%, however, note

that this model is much heavier than the Xception model which

scores comparable accuracy of 98.5%. We then decided to

combine two best performing models to boost the accuracy of

our classifier. At this point we choose the models InceptionV3

and Xception to build an integrated model for final prediction.

Since InceptionV3 performs slightly better than Xception, we

prefer to use slightly higher weights on the results of the

InceptionV3 model. The final confidence score we use to

evaluate the integrated model is presented below:

score = (1.2× InceptionV3) + (0.8× Xception)

Since our scheme uses an integrated model, one has to

adjust the value of the confidence level carefully. We have

done our experiments to find out the best threshold value for

the confidence level, and we chose the threshold for our model

by sliding the threshold value over the range from 0.5 to 1.5

with steps of 0.01. Experiments showed that 0.8 is the best

threshold and thus is chosen for our integrated model.

We then employ the integrated model in our screw de-

tection pipeline and evaluate it on our test dataset. Fig. 6

shows the precision-recall curve of our screw detector. Our

pipeline achieves an AP of 80.23 which clearly outperforms

the well known detector YOLOv3 with an AP of 66.47. Fig. 7

illustrates some samples of the detections by our detector.

DISCUSSION AND CONCLUSIONS

In this study we tackled the fundamental problem of screw

detection in disassembly environments. The problem itself is

a challenging one, since screws have variable shapes and

appearance and not every electronic device has the same
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Fig. 6. Precision-Recall Curve

Fig. 7. Sample outputs of the pipeline. Blue rectangles show the candidates
generated by Hough Transform and the green circles refer to the true
positives predicted by the integrated model. Our scheme is robust to different
backgrounds and to different illumination. In all of the images above, the
screws were detected correctly.

type of screws. This is the reason why previously developed

methods were not useful as a general solution to this problem.

We proposed a model, which is based on the Hough transform

and deep neural networks. Our scheme easily lets the user

use the system for any device of his/her choice, as long as

the user separates the collected data into screws and artifacts

himself. After doing this and training the network, we could

demonstrate that our system achieves real-time performance

with quite high accuracy. This had been quantified with

hard drive devices of different models and sizes, which have

different sizes and types of screws as documented by the

experimental evaluation results of our scheme. The data set

as well as the ROS-based implementation are published to

facilitate further research 1
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