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Linear Algebra
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1 Vectors
1.1 Vector Operations
r+s=s+r 2r=r+r

1.2 Dot Product(Inner Product)
r-s= Z T8

Properties of the Dot Product
e Commutative: r-s=s-r
e Distributive: r-(s+t)=r-s+r-t

e Associative: r - (as) = a(r - s)
r-r:|\r||2:27‘i2 =
i

The angle between two vectors: cosf =

l[efl = v -r

r-s

eIl

1.3 Scalar and Vector Projection

. . r-s
Vector projection: ——r

r-s
Scalar projection: ——
lIxll ror

1.4 Basis

A basis is a set of n vectors that:
1. Are not linear combinations of each other.
2. Span the space.

The space is then n-dimensional.

1.5 Linear Combination and Linear
independence
The vector w is a linear combination of vectors u and v if

w =au+ bv
Two 2D vectors u and v are linearly dependent if
u=av
The three 3D vectors a, b and c are linearly independent if

det(fa| b |c]) #0

2 Matrices
2.1 Identity Matrix

- Y

2.2 Standard Basis

The standard basis or natural basis is the set of vectors
whose coordinates are all zero, except one that equals 1

o<l ol

[éﬂég}:[:[(l) ‘f]

2.3 Transforming Space
Ar =1’
A(nr) = n(Ar) = nr’
A(r +s) = Ar + As

Transforming basis vectors

A('rLél + még) = nAé| + mAé;

= ne/l + me/2

2.4 Transformation Matrices and Composition

cosf sinf
—sinf cos6
Composition of transformations :

Clockwise rotation by 6 : R = [

A Air =1’
C=A24A
Cr=r
2.5 Determinant and Inverse
Let A be a 2 X 2 matrix such that A =

a b
c d
det(A) = |A| = ad — be
qr_ L [d b __ 1 Ta b
T4 ¢ a|  ad—be|-c a

If det(A) = 0 then A™! doesn’t exist (A is not invertible or A is
singular) and the basis of A are linearly dependent.

Determinant :

Inverse :

Solving Systems of Linear Equations :
A system of linear equations in the form Ar = s can be solved
for r using the equation :

r=A"ls

2.6 Matrix Multiplication
A B
[a11 @12 @13 ... a1n7| [b11 bi2 b1z ... b1n
az1 a2 a23 az2n | | b21 b2z ba2s ban
as1 as2 as3 azn | |b31 baz b3z ban | _

LAnl An2 An3 ann bn1 bp2 bns bnn
nxmn nxmn
AB
[abi1 abio abis ... abin
aba1 abag abas aban
abz1 absa abss absn,

Labn1 abn2 abns abnn
nxn
Summation Convention for multiplying matrices A and B :

abik = Za”bjk
J
Einstein summation convention (without big sigma):

abi = aijbji

3 Linear Mappings
3.1 Change of Basis

Changing from standard basis to a new basis by and ba.
The columns of the transformation matrix B are the new basis
vectors in the standard coordinate system.

B=[b1 by

r = Br’
Where r’ is the vector in B-basis, and r is the vector in standard
basis.

r =B 'r

The components of the vector r’ are the scalar projections of
vectors by and bo onto r

rl, = compy, T

r/y = compy,, T
If a matrix A is orthonormal (all the columns are of unit size
and orthogonal to each other) then,

AT = A7t and ATA=1
Transformation in a Changed Basis

To do a transformation Rp on a vector r’ in a changed basis B
using a transformation R in standard basis

Rp =B 'RB
Rpr’ = B"'RBr’



3.2 Gram-Schmidt Process for Constructing
an Orthonormal Basis

Start with n linearly independent basis vectors

v =vVi,Va,...,Vn. Then
Vi
1=
vl
u2
uz =vg — (v2-ey)e; = ey =
fluz]]
u3
u3 = vy — (V3 -el)el — (V3 . 82)92 = e3 =
flus|
. and so on.

3.3 Transformation in a Plane or Other Object

1. Transform into the basis referred to the reflection plane, or
whichever; E~1

2. Do the reflection or other transformation, in the plane of
the object Tg

3. Transform back into the original basis E
So, our transformed vector

r' = ETgE " 'r

4 Eigenvalues and Eigenvectors

Eigen is a German word means characteristic.
To investigate the characteristics of the n X n matrix A, find a
solution to the equation,

Ax = Ax

Where ) is a scalar eigenvalue and x is an eigenvector.

An n X n matrix must have n eigen values A1 ...A,. The n eigen
values might be distinct or same.

Eigenvalues will satisfy the following condition

(A=XDx=0
sdet(A—=XI)=0
For a 2 X 2 matrix A = {a b}
c d

det([”‘zA de}):o

(a=X)(d—=X) —bec=

XN —(a+dr+ad—bc =0

Characteristic Polynomial
of degree 2

The characteristic polynomial is of degree n for n X n matrix.
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4.1 Changing to Eigenbasis

The purpose of this technique is to simplify the computation of
transformations that require raising matrices to large powers.
Calculating the power of a diagonal matriz is easy

A1 0 0 A0 0
D=1{0 X 0 D'=10 A3y O
0 0 A3 0 0 A2
A transformation matrix T" can be decomposed as follows
™ =Cp"Cc™?

Where C is a matrix with eigenbasis and D is a diagonal matrix
with eigenvalues.
D=c"'TC

4.2 Page Rank Algorithm

To find the dominant eigenvector of link matrix L, the Power
Method can be iteratively applied, starting from a uniform initial
vector r.

pitl — ot
A damping factor, d, can be implemented to stabilize this
method as follows.
—d

n

ritl = dLrt + !
Chapter 2
Multivariate Calculus

e Total derivative:
For the function f(z,y,z,...), where each variable is a
function of the parameter ¢, then the total derivative is
o1 _05ox  oroy , ofo:
ot oz dt Ay Ot Oz Ot

1 Common Derivatives
d (1) !
dx \z/)  x2

d .
ﬂ(sm ) = cosw

d

—(cosx) = —sinx
dx

e = %

dx

2 Basic Rules of Differentiation

d d d
e Sum Rule: a(f(m) +g(x) = %(f(fﬂ)) + g(g(m))

e Power Rule: Given f(x) = az®, then
f'(z) = abs®=V
e Product Rule:
Given h(z) = f(z)g(z), then
b (z) = f(z)g(z) + f(z)g' (x)
e Chain Rule: The derivative of the composite function
F(z) = f(g(x)) is given by :
Fl(z) = f'(9(x)) - ¢ (2)
In Lebniz notation, if y = f(u) and u = g(z) then,
dy dydu

de  dudz

3 Derivative Structures
3.1 Jacobian
Given f(z,y, z)
, o5 o5 of
= {ax Ay 82}

Jacobian is a row vector.

Jacobian of a Vector Function

Given r(z,y) = (u(z,y), v(z,y)), where u and v are differntiable
functions.

ou ou
J= oxr Oy
o o
or Oy

If u(z,y) and v(x,y) are linear functions, the Jacobian is a linear
transformation matrix between (z,y) vector space and (u,v)
vector space, then

J=[r(1,0) r(0,1]

Jacobian in Polar Coordinates

z=rcosf,y =rsinf

0
o a—x cosf —rsinf
j—|0or 06| _
% @ sin @ T cos 6
or 00

|| = 7(cos? @ +sin? 9) = r
Numerical Approximation of Jacobian

[+ Azx,y) — f(z,y) flz,y+ Ay) - f(z,y)

J =
Az Ay




3.2 Hessian

fII fzy fzz

Hy=|fya fyy Jyz

fzm fzy fzz
Hessian matrix is a symmetric matrix.
Multivariate Second Derivative Test
If the jacobian Jy = 0 at a point P = (a, b) then

e If [Hy| > 0, then

— If fze > 0, then the function f has a local minimum
at P

— If fze < 0, then the function f has a local mazimum
at P

e If |[H;| < 0, then the point P is a saddle point.

4 Multivariate Chain Rule

Given a function f(x(u(t))), where
f(x) = fz1,z2)
x(u) = {m(uhw)}

w2 (u1,u2)
0= 130

df _ 0f 9x du

dt  Ox du dt

ey Omy | | duy
_ |: af of ] Ouy;  Ouz dt
Oxr1 Oxza % Oxo dﬂ

Ouy 87u2 dt

5 Neural Networks
5.1 Activation Functions

The activation function denoted o(x) can be any of the following

e Hyperbolic tangent :

tanh(z) = %
d%tanh(m) - costh(w) " (e +4e*””)2
e Logistic function:
f@) =7 +1e—ﬂc
@) = m = F@)(1 - f(2) = f(2)f(~2)
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e Rectified Linear Unit(ReLU):

0 for z <0
flw) = {ac for x>0

iy )0 for z <0
Fiz) = {1 for x>0
5.2 Feed-Forward Propagation
all) = g(WDalL-1) 4 p(L))

Z wPaY 4 b}
Jj=

oD —

i (e

5.3 Cost Function
= —[a™ —y?
m

Where N is the output layer, m is the total number of training
samples.
5.4 Backpropagation
acC oCc  9a™) 9alN-1)  9alitl) gald 9z()
W@ galN) galN-1) 9a(N-2) """ 9ali) 9z(i) oW ()

from layer N to layer ¢

aC aCc  8aN) gaV=1  galitl) gali) gz(i)
ob() — 9aN) ga(N-1) ga(N-2) """ gald) 9z()) gbl)

from layer N to layer ¢

dalm)
Where atni D can itself be expanded to :
aln—
dalm  pam) gz
a(”—l) - az(”) aa(”_l)

5.5 Neural Network Partial Derivatives

(N
8a(N> 7( ) — y)
Ha(®) i
9200 o' (2)
oz (®) )
—w®
dali—1) — W
aZ(Z)) (1 1)
PAYVAY
9z -
b0

6 Taylor Series
6.1 Univariate

M) (¢
f@)= 3 L g

n=0

=ﬂ@+fmwxf@+f“”@7@z+£ﬂg

2! 3!

(x—c)®+...

Linearization

1) (@)
n=0 :
= f(z) + f'(z)Az +f ( )A +f/”( )A S ...
fla+ Az) = f(z) + f'(x )(Aw)+O(A22)
g1(z + Az) = f(z) + f'(z)(Ax)

() = @+ A7)~ f(@)
fa)= FEEEE L

_ flz+ Az) — f(x)
- Az
6.2 Multivariate

<

Flx+ Ax)

(@) Az — O (z) Ax?

+ O(Ax)

flz+ Az, y + Ay)
fz,y)
+0z f(x,y) Az + 0y f(z,y) Ay

% (000 (2, ) A

+20uy (2, y) Az Ay + 0y f (2,4) Ay?
= f(=,y)

Az

Horf ) 0ufw )] |31

TRt i

1
= f(x)+JsAx+ 5AxtHfo+...

1(xfc)tHf(c)(xfc) +...

) = f(@) + I s(e)(x — ) + 5

7 Optimization and Vector Calculus
7.1 Newton-Raphson Method
f(=3)
f'(ws)

Titl = Xj —
7.2 Gradient
of
ox
vi=|9f
Oy
of
Oz
7.3 Directional Gradient
Vf-E



7.4 Gradient Descent
Snt1 = Sn — YV f(Sn)
7.5 Lagrange Multiplers

<[]

This method is used to optimize a function f(x) subject to a
constraint g(x) = 0.
Therefore,

VF(x) = AVg(x)

of dg
x| _y |0
of dg
ay dy

This equation, along with g(x) = 0 can be put into a single
vector equation

[,(a:, Y, >‘) = f(x) - Ag(x)

of 99
A W 4
ox ox
Ve(w,y, )= |2F 499 =0
oy oy
—g(x)

We can solve the previous equaiton using root finding methods,
such as the Newton-Raphson method.

7.6 Linear Regression

Simple Linear Regression

T

y=y(z;a;) = mz; +c

i =Y —MT; — C

X =27 = (yi—mai — o)’
i i

2
ox* 0 fQin(yi —mx; — ¢)
Vy2 = om | _ _ i
x>
Do 0 —2;(% —mx; —c)
c=19—mz Oe & Om 9’62+12(a¢72)2
ne
m— 2(z—z)y o2 X
Y(x—x)? " Y@ -1 -2)
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Normalizing z;, the previous equations become:
y=(m=om)(z—2) +(bta)
Se-oy X

S@—2)? Y @ -2 —2)
X2

n(n —2)

m =
b=y O’g =
Generalized non-linear least squares X2
minimization

2y i —y(esan)? k=1..m
X = - o; i=1...n
1

Criterion : Vx2 =0

2
Qnext = Qcur — ’YVX

“ [yi — y(zi;ax)] Oy
= Qcur +7; 0_71@

Chapter 3

Principal Component
Analysis

1.3 Higher-Dimentional Data Sets

Given a dataset D = {x1,...,XN},Xn € IRD, we compute the
variance of dataset as
1 XN
VID) = < " (xn — )k — )T € RDXD

n=1
where p € RP is the mean value of the dataset.

Example

If every element x € R™ of the dataset D is an n-dimensional
1
T2

vector

Tn
the covariance matrix will look as follows:

var[z] cov[zi, z2] cov[zi, Tn]
cov[za,z1] var[zo] cov(za, Tn]
V[D] =
cov[zn,z1] covizn,x2] var[znp|
where

cov[zi, 2] = E[(z; — El[z:])(z; — Elz;])]

1 Statistics

1.1 Mean Values of Higher-Dimensional Data
Sets

Given a dataset D = {x1...XN},Xn € RD, we compute the
mean of the dataset as

1 X
p=ED] =~ ; Xn (3.1)
1.2 Variance
1D Data Sets
Given a dataset D = {z1,...,ZN},Zn € R, we compute the

variance of the dataset as

1 & 1 Y
VD] = % Y (en — E[D)? = - > a2 — E[DP?
n=1 n=1
g 1 J 2 _ 1 J 2 2 3.9
g —N;(In—ﬂ) _N;xn_p‘ (3.2)

where 02 = V[D] is the variance of the dataset.

2 Effect of Linear Transformations
2.1 1D Data Sets
Consider a dataset D = {z1,...,ZzN},Tn € R
E[ D+t = ED +b
E[aD] = aE[D]
. ElaD + b] = aE[D] + b

V[ D+ V[D]
V[aD] = a2V[D]
2. V[aD + b] = a2V[D]

2.2 Higher-Dimentional Data Sets

Consider a dataset D = {x1,...,xn},%n € RP, with
E[D] =p
VD] = ¥

If we transform every x; € D according to
x, = Ax; +b
for a gievn A, b, then
ED]=Ap+b
V[D'|=AXAT

where D' = {x},...,xv}



3 The Dot Product

3.1 Definition
N
x-y=x'y= Z%‘ym

=1

x,yGRN

3.2 Lengths and Distances

The length of a vector x is

N
Ixll = VaTx = |3 a2
i=1

The distance between two vectors x,y is given by

dxy)=Ix—yll=y(x-y)T(x—-y)
3.3 Angles
The angle 6 between two vectors x,y can be computed via
T
cosf = —~
<yl

4 The Inner Product
4.1 Definition

Consider a vector space V. A function that is a positive definite,
symmetric bilinear mapping (-,-) : V x V — R is called an inner
product on V. This function is

e Symmetric : For all x,y € V it holds that (x,y) = (y,x)
o Positive definite For all x € V' \ {0} it holds that
(x,x) >0, (6,0) =0
e Bilinear For all x,y,z€ VA€ R
Ax+y,2z) = Mx,2) + (y,2)
(%, Ay +2) = Mx,y) + (x,2)
(x,y) = x'Iy (dot product)
The function defined by
(x,y) =x"Ay
e w1l
= az1y1 + br1y2 + czoy1 + dzay2

= trace (yxTA>

is an inner product, if and only if, it is symmetric, positive
definite and bilinear.
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4.2 Lengths and Distances

Consider a vector space V with an inner product (-, ).

e The length or norm of a vector x € V' is
x|l = v/ (x,%)
e The distance between two vectors x,y € V is given by

dx,y) =llx—yl=vix-y,x—y)
If the inner product is a dot product, the distance is the
euclidean distance
Properties of the norm :
o [Ax|| = [Alllx]l
¢ Triange Inequality: [ +y| < x| + [ly|
e Cauchy—Schwarz inequality: [(x,y)| < ||x]|||y]]
4.3 Angles

Consider a vector space V with an inner product (-, ).
The angle 0 between two vectors x,y € V' can be computed via

o XY (xy)
<Myl 6 x)(y, )
where the length/norm
[Ix]l = v/ (x,x)

is defined via the inner product.

Length
x|l = v/(x,%x) = /cov[x, x] = y/var[x] = o[x]

Angle Between Two Random Variables

cosf = {x,¥) = cov[x, y]
Iyl ~ Varpdvary]
It evaluates to zero when cov[x,y] = 0 (when the two random

variables are uncorrelated).

5 Inner Products of Functions and
Random Variables
5.1 Continuous Functions

(u,v) = /ab u(z)v(z) dr

If that integral evaluates to 0, then the two functions are
orthogonal to each other.

5.2 Random Variables

For two random variables x and y wich are uncorrelated then
var[x + y] = var[x] + var[y]

Definition
If
(x,y) = covlx,y]
The covariance is
e Symmetric: cov[x,y| = covly, X]
e Positive Definite:

o Bilinear:
cov[Ax +y,z] = Acov[x, z] + covly, z]
cov[x, Ay + z] = Acov[x,y] + cov[x, z]

6 Orthogonal Projections

6.1 Projection onto 1D subspaces

Consider a n-dimensional vector space V' with the dot product at
the inner product and a 1-dimensional subspace U of V. With a
basis vector b € R™ of U, we obtain the orthogonal projection
of any vector x € V onto U via

_ bTx _ bTx

~bTb b2

where A is the 1D coordinate of 7,(x) with respect to b.

The projection matrix P, € R" is

7wy (x) = Ab,

__bb"T _ bbT
T bbb |b|2
such that
Ty (x) = Prx
forallx e V
Properties

1. (b, 7, (x) — x) = 0 (orthogonality)
2. my(my(x)) = (%)
In the special case that b is normalized:
P.=bb'

A=b"x (3.3)

6.2 Projection Onto k-Dimensional Subspaces

Consider an n-dimensional vector space V' with the dot product
at the inner product and a k-dimensional subspace U of V. With

basis vectors by, ..., by of U, we obtain the orthogonal
projection of any vector x € V onto U via
7y (x) = BA, A=B"B)"'BTx
where
A1
B = [by]...|bg] € R**¥ A=|:| eRF
Ak

where A is the coordinate vector of 7, (x) with respect to the
basis by,...,by of U.
The projection matrix P, € R" is
P, =BB'B)"'BT
such that
(%) = Prx (3.4)
for all x € V



Notes
e In the special case of B is an orthonormal basis:
P, =BB" (3.5)
A=BTx (3.6)

e The value of A can be obtained by Gaussian elimination of
the normal equation

B'BA=BTx

e P! =P,

o 7, (x)T (7, (x) — %) = 0 (orthogonality)
6.3 Least squares regression
Assuming that we have a prediction model in the way such that

b= f(@i) = 0Tw; = 2]0

where « is the feature vector, y is the label and g is the
prediction.

If we collect the dataset into a (N, D) data matrix X, we can
write down our model like this:

X0=4q.
Note that the data points are the rows of the data matrix, i.e.,
every column is a dimension of the data.
Our goal is to find the best @ such that we minimize the
following objective (least square).

n
> g —will®

=1
n

=>_[07@; — yil?
=1

=(X0-y)' (X6 —y).

If we set the gradient of the above objective to 0, we have

Vo(X0-y) (X0-y) = 0
Ve(@'XT—y")(X0-y) = O
Vo0 XTX0-y"X0-0"X"y+y'y) = O
2XTxX0-2X"y = 0

X'x0 = X"y

The solution that gives zero gradient solves (which we call the
maximum likelihood estimator) the following equation:
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X'X0=XTy.
This is exactly the same as the normal equation we have for
projections.
This means that if we solve for X' X6 = X "y. we would find
the best 8 = (XTX) !XTy, i.e. the § which minimizes our
objective.

7 Principal Component Analysis
7.1 Orthogonal Complements

e If we look at an n-dimensional vector space V and a
k-dimensional subspace W C V/, then the orthogonal
complement W is an (n — k)-dimensional subspace of V/
and contains all vectors in V' that are orthogonal to every
vector in W

e Every vector x € V can be (uniquely) decomposed into

k n—k
x= 3 bt 3 bt
i=1 j=1

,where by, ...,by is a basis of W and bf‘, ..
basis of W+

7.2 PCA Derivation
Problem Setting

Aiy¥j €R (3.7)

bt isa

For the data matrix X = [x1]...|xn], xn € RP

Given orthonormal basis [b1]...|bp], then

1. Each x5 can be represented as a linear combination of
basis b;

D
Xn =Y Binbi (3.8)
i=1

2. The orthogonal projection of x, onto the one-dimensional
subspace spanned by the i¢th basis vector is given by:

3.3
Bin ) X7 b;

3. If we choose a subset of basis [b1]...|bp] to form a new
lower-dimensional basis

B = [b1,...,by]

where M < D,

The orthogonal projection of x onto the subspace spanned
by the M basis vectors can be written as

zn ) BBTx,
—

code
where BTxn is the coordinates or code.
We also assume that

e The data is centered

EX]=0

e The basis by, ...,bp is orthonormal basis (ONB)

Equation 3.8 can be split into

M D
3.7
i=1 i=M+1
M
%n =Y _ Binb; € RM (3.10)
i=1
bi,...,bas span the principal subspace. B;y is called the code or

coordinates of X, with respect to the basis vectors.

Average Squared Reconstruction Error

The average squared reconstruction error can be written as:

1 N
J=—= Xn — Xn | 3.11
N,;” n = n| (3.11)

Our objective is to minimize the error J. We compute the partial
derivatives of J with respect to the parameters 3;, and b;, then
set them to zero and solve for the optimal parameters.

aJ  8J  B%n
M Binsbi}  9%n {Bin, bi}

aJ 2 T
8%, N

(3.12)

Finding Optimal Projection Parameters

aJ 9J 0xp
aIBin B 85{11 6171

3.12 2 -

( = )_ N (xn _xn)Tbi

T
(3.10) 2 M
i ke > Binbj | bi
j=1

ONB _ 2 ( Ty g pTp.
= N (xnbz /an bl ll)z )

= - % (xlbi - ﬁm)

oJ

) Thy (3.13)

2
= _N(xlbi = Bin) =0 < Bin



Reformulation of The Objective Function
(3.10) <=
Xn, = Zﬂjnbj
j=1
€L (xlba‘) b;

M
by (b]xn) = [ Y_bsb] | xn
j=1

projection
matrix

e

Il
-

J

M D
xn= (> bjbj |xa+ | > bjb]|xn
j=1

j=M+1
D
SXn—%n={ Y b;bl|x,
j=M+1
D
= Y (bjxa)b; (3.14)
j=M+1
(3.11) 1 N
J V= NZ”xnﬂan?
n=1
2
(3.14) 1 N D T
=TS X (b)),

Il I
=
M .
AN
— F,
Z| = )
3
M= &
% g
3
%
34
N———
o
<

j=M+1 n=1
S
D
= > bjSb; (3.15)
J=M+1
D
= trace Z bij S

J=M+1

D
where Z b; b is the projection matrix that takes our
J=M+1
covariance matrix S and project it onto the orthgonal
compliment of the principal subspace.
So, the loss function can be reformulated as the variance of the
data projected onto the subspace we ignore.
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Finding Optimal Basis Vectors

Solving equation 3.15 subject to a constraint b;-—bj = 1 using the
method of Lagrange multipliers.

b/b; =1 (3.16)
b/b; —1=0

L(bj,\;) =bSb; — Xj(b/b; — 1)

=b]Sb; + X;(1—b/b;)

oL

T _ T
afl—bjbj—o = bjbjfl
oL
FTvee 2bJS — 2)\;b] =0 & Sb; =\;b;  (3.17)
J

Equation 3.17 is an eigenvalue-eigenvector equation.
substituting equation 3.17 in 3.15

The average reconstruction error is minimised if we choose the
basis vectors that span the ignored subspace to be the
eigenvectors of the data covariance matrix that belong to the
smallest eigenvalues.

D
J= >N
J=M+1

7.3 Steps of PCA

Assume that we have a dataset X = [x1]...|xy]T € RV*P with
N data points and each data point is D-dimensional. We want to
perform PCA on the dataset for M principal components, where
M < D.

Data normalization

1. Compute the mean p and the standard deviation o of the
data matrix X

3.1) 1 N :
B o
n=1

2. Then normalize the data matrix X to obtain X by mean
subtraction then dividing by the standard deviation of
each data point.

Xn — W

bl
3
Il

PCA algorithm (If N > D):
1. Solve the eigenvector/eigenvalue equation

sb; “27 \bs

by computing the orthonormal eigenvectors b; of the data
1 _+-
covariance matrix S = NXTX e RPxDP
2. Choose the eigenvectors b; associated with the M largest
eigenvalues to be the basis of the principal subspace.
3. Collect these eigenvectors in a matrix B = [by]...|ba/]

4. Compute the orthogonal projection of the data onto the
principal axes

5 (3.4

x e x

35)

where P BB is the projection matrix.

PCA for High-Dimensional Datasets (If N < D):

computing the covariance matrix for high-dimensional data is
very computationally expensive. So, the computations can be
simplified by the following:

1. Solve the eigenvector/eigenvalue equation
1 -
NXXTCZ' = \ic; (3.18)
where ¢; = Xb;, by computing the eigenvectors c¢; of the
1 -
matrix NXXT € RNXN,
2. Choose the eigenvectors c; associated with the M largest
eigenvalues.
3. Recover the original orthonormal eigenvectors b; of the
j p——
data covariance matrix S = NXTX by left-multiplying
the eigenvector equation (3.18) by X7, which yields
1l o7s = =
NXTX XTc, = \iXTc;
S

and we recover X 'c; as an eigenvector of S with (the
same) eigenvalue \;

4. To perform PCA make sure to normalize the recovered

eigenvectors so that || X e;|| = 1.
XTe;
b; = ?CZ
[XTeil
5. Collect these eigenvectors in a matrix B = [by]...|ba/]

6. Compute the orthogonal projection of the data ontho the
principal axis
% p x
(3.5)

where P, BB is the projection matrix.
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