Software Open Access

wannesm/dtaidistance v2.0.0

Wannes Meert; Kilian Hendrickx; Toon Van Craenendonck


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3981067</identifier>
  <creators>
    <creator>
      <creatorName>Wannes Meert</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9560-3872</nameIdentifier>
      <affiliation>KU Leuven</affiliation>
    </creator>
    <creator>
      <creatorName>Kilian Hendrickx</creatorName>
      <affiliation>KU LEuven</affiliation>
    </creator>
    <creator>
      <creatorName>Toon Van Craenendonck</creatorName>
      <affiliation>KU Leuven</affiliation>
    </creator>
  </creators>
  <titles>
    <title>wannesm/dtaidistance v2.0.0</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-08-12</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3981067</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/wannesm/dtaidistance/tree/v2.0.0</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1202378</relatedIdentifier>
  </relatedIdentifiers>
  <version>v2.0.0</version>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;New in v2:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Numpy is now an optional dependency, also to compile the C library (only Cython is required).&lt;/li&gt;
	&lt;li&gt;Small optimizations throughout the C code to improve speed.&lt;/li&gt;
	&lt;li&gt;The consistent use of &lt;code&gt;size_t&lt;/code&gt; instead of &lt;code&gt;int&lt;/code&gt; allows for larger data structures on 64 bit machines and be more compatible with Numpy.&lt;/li&gt;
	&lt;li&gt;The parallelization is now implemented directly in C (included if OpenMP is installed).&lt;/li&gt;
	&lt;li&gt;The &lt;code&gt;max_dist&lt;/code&gt; argument turned out to be similar to Silva and Batista&amp;#39;s work on PrunedDTW [7]. The toolbox now implements a version that is equal to PrunedDTW since it prunes more partial distances. Additionally, a &lt;code&gt;use_pruning&lt;/code&gt; argument is added to automatically set &lt;code&gt;max_dist&lt;/code&gt; to the Euclidean distance, as suggested by Silva and Batista, to speed up the computation (a new method &lt;code&gt;ub_euclidean&lt;/code&gt; is available).&lt;/li&gt;
	&lt;li&gt;Support in the C library for multi-dimensional sequences in the &lt;code&gt;dtaidistance.dtw_ndim&lt;/code&gt; package.&lt;/li&gt;
&lt;/ul&gt;</description>
  </descriptions>
</resource>
2,183
73
views
downloads
All versions This version
Views 2,1831,061
Downloads 7318
Data volume 7.8 MB4.5 MB
Unique views 1,756842
Unique downloads 5417

Share

Cite as