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ABSTRACT  

Objective 

COVID-19 poses societal challenges that require expeditious data and knowledge sharing. Though 
organizational clinical data are abundant, these are largely inaccessible to outside researchers. 
Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what 
is available in any given organization. Here, we introduce the National COVID Cohort Collaborative 
(N3C), an open science community focused on analyzing patient-level data from many centers.  

Methods 

The Clinical and Translational Science Award  (CTSA) Program and scientific community created N3C 
to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-
level clinical data. We developed solutions to extract, aggregate, and harmonize data across 
organizations and data models, and created a secure data enclave to enable efficient, transparent, and 
reproducible collaborative analytics. 

Organized in inclusive workstreams, in two months we created: legal agreements and governance for 
organizations and researchers; data extraction scripts to identify and ingest positive, negative, and 
possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single 
harmonized dataset; population of the secure data enclave with data, machine learning, and statistical 
analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access.    

Discussion 

The N3C has demonstrated that a multi-site collaborative learning health network can overcome barriers 
to rapidly build a scalable infrastructure incorporating multi-organizational clinical data for COVID-19 
analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, 
researchers, and data scientists to identify treatments and specialized care and thereby reduce the 
immediate and long-term impacts of COVID-19.  

LAY SUMMARY  

COVID-19 poses societal challenges that require expeditious data and knowledge sharing. Though 
medical records are abundant, they are largely inaccessible to outside researchers. Statistical, machine 
learning, and causal research are most successful with large datasets beyond what is available in any 
given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science 
community focused on analyzing patient-level data from many clinical centers to reveal patterns in 
COVID-19 patients. To create N3C, the community had to overcome technical, regulatory, policy, and 
governance barriers to sharing patient-level clinical data. In less than 2 months, we developed solutions 
to acquire and harmonize data across organizations and created a secure data environment to enable 
transparent and reproducible collaborative research. We expect the N3C to help save lives by enabling 
collaboration among clinicians, researchers, and data scientists to identify treatments and specialized 
care needs and thereby reduce the immediate and long-term impacts of COVID-19.  

 

mailto:melissa@tislab.org
mailto:chute@jhu.edu


Version 2020-07-14; In press (JAMIA open)                                                                                      2 

 

 

INTRODUCTION 

 

Rationale 

The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has infected 12.6 million people—
and the 2019 Novel Coronavirus Disease (COVID-19) has caused 562,000 deaths—worldwide as of July 
11, 2020, according to the Johns Hopkins[1]. Scientists warn that recurrences are likely after the current 
initial pandemic, particularly if SARS-CoV-2 immunity wanes over time[2]. To curb this trajectory, in 
addition to public health measures to contain the virus as much as possible, it is crucial to gather large 
amounts of data in a comprehensive and unbiased fashion[3]. These data enable the global community 
to understand the natural history and complications of the disease, ultimately guiding approaches to 
effectively prevent infection and manage care for individuals with COVID-19. 

Key challenges of a new pandemic disease include understanding pathophysiology and symptom 
progression over time; addressing biological, environmental, and socioeconomic risk and protective 
factors; identifying treatments; and rapidly building clinical decision support (CDS) and practice 
guidelines. The pandemic raises many difficult questions: Which drugs are most likely to benefit a given 
patient? What treatments, risk factors, and social determinants of health (SDoH) impact disease course 
and outcome? How do we develop, adapt, and deploy CDS to keep up with a dynamic pandemic? To 
address these questions, it is critical to analyze a high volume of reliable patient-level, accurately-
attributed, nationally-representative data.  

Currently, the research community’s access to electronic health record (EHR) data is limited within given 
organizations or consortia of local and regional organizations. Research consortia such as Accrual to 
Clinical Trials Network (ACT)[4], National Patient-Centered Clinical Research Network (PCORnet)[5], 
Observational Health Data Sciences and Informatics (OHDSI)[6], FDA’s Sentinel Initiative[7], TriNetX[8], 
and the recently established international Consortium for Characterization of COVID-19 by EHR (4CE)[9] 
support querying structured data across participating organizations using a common data model (CDM). 
These networks are a vital resource for responding to the COVID-19 crisis, revealing key patterns in the 
disease[9,10]. However, their distributed nature would greatly complicate certain types of analyses that 
require a centralized approach to enable timely analyses. Study questions and data queries that can be 
pre-specified, such as testing for associations between one or a group of comorbidities and laboratory 
results, are often answerable using federated networks. In contrast, centralized resources can greatly 
simplify implementation of iterative processes such as training deep learning algorithms and carrying out 
clustering for phenotype development. [11–14]   A centralized resource also enables rapid integration 
with knowledge graphs and other translational knowledge and data sources to aid discovery, 
prioritization, and weighting of results. Federated machine learning algorithms will likely ultimately play 
important roles in allowing model training on distributed datasets [15–19]. While these methods show 
great promise, we have chosen not to pursue this approach at this time to avoid adding complexity to an 
already ambitious project. Creating a massive corpus of harmonized EHR data for analytics would 
support rapid collaboration and discovery, and also build upon the substantial resources (e.g. CDM-
specific data quality tools, etc.) developed within the federated consortia.    

The recent retractions in the Lancet[20] and the New England Journal of Medicine[21] have underscored 
the need for fully provenanced and reproducible EHR analyses as major policy decisions that can hinge 
on EHR results. Moreover, the pathway for obtaining permissions to reuse data must be clear and well-
documented. The ideal data resources are FAIR (findable, accessible, interoperable, reusable), 
particularly in a pandemic where analyses must be fast, verifiable, and based on the latest data[22]. 
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N3C Overview 

The National COVID Cohort Collaborative (N3C; covid.cd2h.org) aims to aggregate and harmonize EHR 
data across clinical organizations in the United States (US), especially the Clinical and Translational 
Science Awards (CTSA) Program hubs that encompass more than 60 organizations and their 
partners[23]. In just two months, the N3C was built on a foundation of established, productive research 
communities and their existing resources. It comprises a collaborative network of more than 600 
individuals and 100 organizations and is growing. N3C enables broad access and analytics of 
harmonized EHR data, demonstrating a novel approach for collaborative data sharing that could 
transcend current and future health emergencies. The primary features of N3C are: national collaboration 
and governance, regulatory strategies, COVID-19 cohort definitions via community-developed 
phenotypes, data harmonization across four CDMs, and development of a collaborative analytics platform 
to support deployment of novel algorithms of data aggregated from the US. The N3C supports 
community-driven, reproducible, and transparent analyses with COVID-19 data, promoting rapid 
dissemination of results and atomic attribution and demonstrating that open science can be effectively 
implemented on EHR data at scale.  

N3C is built upon principles of partnership, inclusivity, transparency, reciprocity, accountability, and 
security: 

● Partnership: N3C members are trusted partners committed to honoring the N3C Community Guiding 
Principles and User Code of Conduct. 

● Inclusivity: N3C is open to any organization that wishes to contribute data. N3C also welcomes 
registered researchers who follow our governance processes, including citizen and community 
scientists, to access the data. 

● Transparency:  Open and reproducible research is the hallmark of N3C. Access to data is project-
based. Descriptions of projects are posted and searchable to promote collaborations. 

● Reciprocity: Contributions are acknowledged and results from analyses, including provenance and 
attribution, are expected to be shared with the N3C community. 

● Accountability: N3C members take responsibility for their activity and hold each other accountable 
for achieving N3C objectives. 

● Security: Activities are conducted in a secure, controlled-access, cloud-based environment, and are 
recorded for auditing and attribution purposes.  

The analytics platform or N3C Enclave, hosted by a secure National Center for Advancing Translational 
Science (NCATS)-controlled cloud environment, includes clinical data from patients who meet criteria in 
the N3C COVID-19 phenotype from sites across the US dating back to January 2018[24]. Privacy-
preserving record linkage will be developed to allow association with additional regulatory approvals to 
other datasets, such as imaging, genomic, or clinical trial data. Additionally, N3C will pilot the creation of 
algorithmically-derived synthetic data sets. The N3C data is available to researchers to conduct a broad 
range of COVID-19-related analyses. N3C activities are divided into five workstreams as shown in Figure 
1. 

http://covid.cd2h.org/
https://paperpile.com/c/iDkGdc/i0Px
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Figure 1. Establishing N3C socio-technical processes and infrastructure via community workstreams. Each workstream 
includes representatives from National Center for Advancing Translational Sciences (NCATS)[25], the CTSA hubs[26], the 
Center for Data to Health (CD2H)[27], sites contributing data, and other members of the research community. 1) Data 
Partnership & Governance: This workstream designs governance and makes regulatory recommendations to NIH for their 
execution. Organizations  sign a Data Transfer Agreement (DTA) with NCATS and may use the central IRB.  2) Phenotype and 
Data Acquisition: The community defines inclusion criteria for the N3C COVID-19 cohort and supports organizations in 
customized data export. 3) Data Ingest & Harmonization: Data resides within different organizations in different CDMs. This 
workstream quality-assures and harmonizes data from different sources and CDMs into a unified dataset. 4) Collaborative 
Analytics workstream: Data are made accessible for collaborative use by the N3C community. A secure data enclave (N3C 
Enclave), from which data cannot be removed, houses analytical tools and supports reproducible and transparent workflows. 
Formulation of clinical research questions and development of prototype machine learning and statistical workflows is 
collaboratively coordinated; Portals and dashboards support resource, data, expertise, and results navigation and reuse; 5) 
Synthetic Clinical Data: A pilot to determine the degree to which synthetic derivatives of the limited dataset (LDS) are able to 
approximate analyses derived from original data, while enhancing shareable data outside the N3C Enclave. 

DATA PARTNERSHIP & GOVERNANCE 

The Data Partnership and Governance Workstream focuses on collaboratively developing a governance 
framework to support open science, while preserving patient privacy and promoting ethical research. 
With this goal in mind we borrowed best practices from prior work including centralized data sharing 
models (All of Us Research Program researcher hub[28], Human Tumor Atlas Network[29], the Synapse 
platform[30–35]) and consulted governance frameworks of other networks (Global Alliance for Genomics 
and Health[36], International Cancer Genome Consortium[37], ACT Network[38]). The N3C governance 
framework was drafted and refined iteratively with feedback from partners, especially from sites 
contributing data. This framework is composed of interlocking elements: (1) a secure analytic 
environment; (2) governing documents; (3) data transfer and access request processes and the Data 
Access Committee; (4) community guiding principles; and (5) an attribution and publication policy.  The 
regulatory steps for organizations and users are shown in Figure 2, which provides details on the many 
layers of security, approvals, and policy-meeting required to ensure the dual goals of the highest security 
for and broad usage of the data. N3C supports four tiers of data:  HIPAA limited data, HIPAA Safe-harbor 
data, aggregate data, and synthetic data[39,40] (see Table 1).  

https://paperpile.com/c/iDkGdc/6wrC
https://paperpile.com/c/iDkGdc/KuKB
https://paperpile.com/c/iDkGdc/uRgT
https://paperpile.com/c/iDkGdc/uzKL
https://paperpile.com/c/iDkGdc/Bk1N
https://paperpile.com/c/iDkGdc/ooxw+3pHa+DueE+UwTM+7j1F+dew8
https://paperpile.com/c/iDkGdc/H06Z
https://paperpile.com/c/iDkGdc/Qh3p
https://paperpile.com/c/iDkGdc/7X7e
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Figure 2.  Regulatory steps and user access. Organizations can operate as data contributors or data users or both; 
contribution is not required for use. For contributing organizations, the first step is a Data Transfer Agreement (DTA) which is 
executed between NCATS and the contributing organization (and its affiliates where applicable). For organizations using data, 
a separate, umbrella/institute-wide Data Use Agreement (DUA) is executed between organizations and NCATS. Interested 
investigators submit a Data Use Request (DUR) for each project proposal, which is reviewed by a Data Access Committee 
(DAC). The DUR includes a brief description of how the data will be used, a signed User Code of Conduct (UCoC) that articulates 
fundamental actions and prohibitions on data user activities, and if requesting access to patient-level data a proof of additional 
IRB approval. The DAC reviews the DUR and upon approval, grants access to the appropriate data tier within the N3C Enclave. 
Synthetic data currently follow the same procedure, but if the pilot is successful, we aim to make access available by simple 
registration if provisioned by the organizations. The lock symbol references steps where multiple conditions must be met. 

Security, privacy, and ethics 

N3C has designed and tested processes and protocols to protect sensitive data and provide ethical and 
regulatory oversight. The N3C Enclave, which provides the only external access to the combined data 
set, is protected by a Certificate of Confidentiality[41]. This allows for granular access controls, activity 
auditing, and prevention of data downloads. NCATS acts as the data steward on behalf of contributing 
organizations. 

Community Guiding Principles  

Shared expectations and trust are essential for the success of the N3C community. Our goal is to ensure 
that N3C provides the ability to easily engage and onboard to a collaborative environment, for the 
broadest possible community. To this end, the workstream developed Community Guiding Principles 

https://paperpile.com/c/iDkGdc/fWLU
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(CGP), which describe behavioral and ethical expectations, our diversity statement, and a conflict 
resolution process.  

Data Transfer and Data Use Agreements 

The Data Partnership and Governance Workstream worked closely with NCATS to develop two 
governing agreements: the Data Transfer Agreement (DTA), which is signed by contributing 
organizations and NCATS, and the Data Use Agreement (DUA), which is signed by accessing 
organizations and NCATS. Under the HIPAA Privacy Rule[40], a limited dataset may be shared if an 
agreement exists between the disclosing and the receiving parties. The NCATS DTA and DUA meet 
these HIPAA requirements and include provisions prohibiting any attempts to re-identify the data or use 
it beyond COVID-19 research. The decision to cover data transfer and data use as separate agreements 
was intentional, as it allows organizations to access data even if they do not contribute data.  

IRB Oversight 

Submission of data to N3C must be approved by an Institutional Review Board (IRB). To lower the burden 
associated with individual IRB submissions, and in accordance with the revised Common Rule[42]  we 
established a central IRB at Johns Hopkins University School of Medicine (JHM) via the SMART IRB[43] 
Master Common Reciprocal reliance agreement. Contributing sites are encouraged to rely on the central 
IRB, but may choose to undergo review through their local IRB. This initial IRB approval is intended to 
cover only contribution of data to N3C and does not cover research using N3C data.  

Data Use Request and Approvals 

The Data Partnership and Governance Workstream and NCATS collaboratively developed a Data Use 
Request (DUR) framework, with the dual aims of protecting patient data and ensuring a transparent 
process for data access. Our tiered approach to data access allows us to reduce regulatory burden on 
investigators, while ensuring appropriate regulatory approvals are in place. There are three tiers of 
access: Registered, Controlled, and Controlled-Plus as described in Table 1.    

Investigators wishing to access the data must have an N3C user profile linked to a public Open 
Researcher and Contributor Identifier (ORCID)[44]. Access requirements and approval processes vary 
depending on the level of access requested. For each project for which a user wishes to access data, he 
or she must submit a DUR with their intended data use statement and include a non-confidential abstract 
of the research project that will be publicly posted within N3C for transparency and to encourage 
collaborations. Data requesters must also sign a User Code of Conduct to affirm their agreement to the 
N3C terms and conditions. The N3C Data Access Committee (DAC), composed of representatives from 
NIH with occasional consulting from N3C community members, will review the DUR and verify that the 
conditions for access (see Table 1) are met. The DAC’s role is to evaluate DURs; it does not exist to 
evaluate the scientific merit of the project. 

  

https://paperpile.com/c/iDkGdc/00Wj
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Table 1. N3C data access tiers and conditions for COVID-19 related research. 

Access Level Registered Controlled Controlled-Plus 

Data Type 
Synthetic Data  
[45,46] 
(pending pilot) 

Aggregate Data (i.e., 
counts) 

HIPAA Safe Harbor 
[40,47,48]  

HIPAA Limited  
[49] 

Description 
Computational data derivative 
that statistically resembles the 
original data 

Counts and summary 
statistics representing 
10 or more individuals 

Data stripped of 18 
direct identifiers per 
HIPAA rules 

Data that may contain 3 
direct identifiers per 
HIPAA rules (dates, full 
zip code, and any age) 

Capabilities 

Downloadable data 
Planned: pending validation & 
organizational agreement 

Downloadable  
query results 

No No 

Custom software  Yes 
Yes - 
on downloaded query 
results 

Yes with DAC 
approval  

Yes -  
 with independent IRB 
and DAC approval 

Access Prerequisites 

Affiliation Requirement  
Planned: no affiliation required 
(pending pilot validation) 

Academic or 
commercial research 
organizations 

Academic or 
commercial research 
organizations 

Academic or commercial 
research organizations 

Data Use Agreement 
Signed by Home 
Organization  

Required at present (planned to 
be not required pending pilot) 

Required Required Required 

Human Subjects Training Required at present Required Required Required 

NIH Security Training Required at present Required Required Required 

Request Submission and Approval Steps  

Data Use Request Required at present Required Required Required 

Rationale for Accessing 
Identified Data 

N/A N/A N/A Required 

General description of 
research project 
(objectives, testable 
hypothesis, planned 
analysis) 

Yes Yes Yes Yes 

Abstract of research 
project 
 (posted publicly) 

Yes Yes Yes Yes 

Approval Process DAC DAC DAC DAC + IRB 

 

https://paperpile.com/c/iDkGdc/iZEz+7wsk
https://paperpile.com/c/iDkGdc/wDff+00Wj+wNCp
https://paperpile.com/c/iDkGdc/hRVa


Version 2020-07-14; In press (JAMIA open)                                                                                      8 

Attribution and Publication Policy 

N3C participants share a commitment to the dissemination of scientific knowledge for the public good. 
The Attribution and Publication Policy extends FAIR[22,50] to encompass all contributions to the N3C. 
Analyses posted within the N3C Enclave leverages the Contributor Attribution Model[51] to track the 
transitive credit[52] of all upstream contributors. A publication committee assists in tracking N3C 
outcomes. This first N3C manuscript was developed through an open call for contributions from the entire 
N3C and is an exemplar of the Attribution Policy.  

N3C Data Linkage 

Clinical data have high utility for COVID-19-related research; however, N3C recognizes the need to 
analyze clinical data along with data from other sources. Therefore, we will establish a privacy-preserving 
strategy to enable linkages within and external to the N3C data set. In this way, genomic, radiology, 
pathology imaging, and other data can be analyzed in conjunction with the N3C clinical data. It will also 
lay the groundwork for future studies to deduplicate patients. 

PHENOTYPE AND DATA ACQUISITION 

The purpose of this workstream is threefold: (1) to determine the data inclusion/exclusion criteria for 
import to N3C (computable phenotype); (2) to create and maintain a set of scripts to execute the 
computable phenotype in each of four CDMs—ACT, OMOP, PCORnet, and TriNetX—and extract 
relevant data for that cohort; and (3) to provide direct support to sites throughout the data acquisition 
process. 

Computable Phenotype Definition 

Given our evolving understanding of COVID-19 signs and symptoms, it is challenging to define stable 
computable phenotypes that can accurately identify COVID-19 patients from their EHR data. To ensure 
that the data in N3C encompass these varied and fluctuating perspectives, we chose to bring together 
existing inclusion criteria and codesets from a number of organizations (e.g., CDC coding 
guidance[53,54], PCORnet[55], OHDSI[56], LOINC[57], etc.) into a “best-of-breed” phenotype. The draft 
phenotype was iterated within the N3C community and remains open to public comment. The N3C 
phenotype[58] is designed to be inclusive of any diagnosis codes, procedure codes, lab tests, or 
combination thereof that may be indicative of COVID-19, while still limiting the number of extracted 
records to meaningful and manageable levels (see Table 2). Notably, the N3C COVID-19 phenotype 
purposely includes patients who tested negative for COVID-19; thus inclusion in the N3C cohort is not 
equivalent to “positive for COVID-19,” but rather “relevant for COVID-19-related analysis” as defined by 
their categorization as “lab-confirmed negative,” “lab-confirmed positive,” “suspected positive,” or 
“possible positive” (see the N3C phenotype documentation[59] for detailed definitions of these 
categories). 

Table 2. Scale comparison of three sites’ positive COVID-19 cases, their N3C-relevant cohort, and their 
denominator (number of patients seen in a one-year period). All numbers rounded to nearest 10. 

 Site 1 Site 2 Site 3 

COVID-positive patients as publicly 
reported by site[a] 

2,550 5,540 390 

N3C-relevant cohort[b] 67,350 46,500 12,000 

Denominator[c] 1,271,510 1,259,330 172,000 

[a] The number of COVID-positive patients publicly reported by this site as of the week of 6/8/2020 
[b] The number of patients qualifying for the N3C COVID-relevant phenotype at this site as of the week of 6/8/2020 

https://paperpile.com/c/iDkGdc/Mp0g+qqft
https://paperpile.com/c/iDkGdc/VFxz
https://paperpile.com/c/iDkGdc/j0ZR
https://paperpile.com/c/iDkGdc/H9dq+xZl6
https://paperpile.com/c/iDkGdc/82wY
https://paperpile.com/c/iDkGdc/3r7u
https://paperpile.com/c/iDkGdc/5DCM
https://paperpile.com/c/iDkGdc/86XW
https://paperpile.com/c/iDkGdc/YhnN
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[c] The number of unique patients seen in a one-year period at this site 

 

To encourage maximal community input into the phenotype definition, we chose to use GitHub[60] to 
host all versions of the phenotype definition in both machine-readable (SQL) format and human-readable 
descriptions[61]. The phenotype is updated approximately every two weeks, reflecting (for example) 
when the emergence of new variants of COVID-19 lab tests necessitate adding new LOINC codes, or to 
incorporate suggestions from the community.  

Data Extraction Scripts 

Once the N3C community agreed on the initial phenotype logic, the initial phenotype logic was translated 
into SQL to run against each of four common data models at participating sites: ACT, OMOP, PCORnet, 
and TriNetX. Multiple SQL dialects support the different relational database management systems in use.  

The use of existing CDMs allows for rapid startup and minimizes the burden of participation by 
contributing sites. Most CTSA sites and many other medical centers host one or more CDMs. In 
particular, the following four CDMs are frequent in these communities, and form the basis for data 
submission to N3C: 

● ACT Network: A federated network, data model, and ontology for CTSA sites that consists of i2b2 
data repositories that are integrated by the SHRINE (Shared Health Research Information 
Network)[62] platform, focused on real time querying across sites[4]. 

● PCORnet: The official federated network and data model for the Patient-Centered Outcomes 
Research Institute (PCORI)[63] is a US-based network of networks focusing on patient-centered 
outcomes. 

● OHDSI: A multi-stakeholder, open science collaborative focused on large-scale analytics in an 
international network of researchers and observational health databases maintaining and using the 
OMOP CDM[64].  

● TriNetX: An international network of clinical sites coordinated by a commercial entity (TriNetX, Inc.) 
providing clinical data for cohort identification, site selection, and research to investigators in healthcare 
and life sciences[8,65]. 

Contributing organizations are expected to submit data using one of these models. 

N3C’s SQL scripts serve two functions for participating sites: (1) to identify the qualifying patient cohort 
in a site’s CDM of choice and store that cohort in a table, and (2) to extract longitudinal data for the stored 
cohort into flat files, ready for transmission to the central N3C data repository. The scripts extract the 
majority of the tables and fields in each of the CDMs, with the exception of tables and fields that are 
unique to a single model and cannot be successfully harmonized. At a high level, data domains extracted 
by N3C include: demographics, encounter details, medications, diagnoses, procedures, vital signs, 
laboratory results, procedures, and social history; specific variables included in these domains for each 
of the data models can be found in each model’s documentation[66–68]. Like the phenotype definition, 
all scripts are publicly posted on GitHub[69] for community comment and peer-review.  

Data Transfer Process 

The guiding principle for these scripts is to minimize customization at the local site level. The workstream 
devised four different methods of data extraction and transfer (see Table 3), allowing sites to use the 
technology stack with which they are most comfortable, while complying with our guiding principles. 

Once a site joins N3C and is ready to contribute data, members of the Phenotype and Data Acquisition 
workstream make themselves available via web-based “office hours” to onboard the new site and explain 
the process for script execution and data transmission.  

Table 3. Data extraction and transfer methods that sites may use to submit data to N3C. 

https://paperpile.com/c/iDkGdc/GOyL
https://paperpile.com/c/iDkGdc/RuN5
https://paperpile.com/c/iDkGdc/LKvz
https://paperpile.com/c/iDkGdc/p2Q62
https://paperpile.com/c/iDkGdc/cyvdU
https://paperpile.com/c/iDkGdc/Nq1I2
https://paperpile.com/c/iDkGdc/PMZ4z+92jc
https://paperpile.com/c/iDkGdc/BOPb+et0D+CmAt
https://paperpile.com/c/iDkGdc/lp10
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 Human (Manual) Steps Automated Steps 

R Package 1. Download the R and SQL code. 
2. Configure local variables (DB 

connection, schema names, etc.) 

3. Run phenotype and extract scripts.  
4. Extract results to individual files, 

following N3C naming and structure 
conventions. 

5. SFTP extract to N3C. 

Python 
Package 

1. Download the Python and SQL code. 
2. Configure local variables (DB 

connection, schema names, etc.) 

3. Run phenotype and extract scripts.  
4. Extract results to individual files, 

following N3C naming and structure 
conventions. 

5. SFTP extract to N3C. 

TriNetX (Automated step first) 
1.  Download data from TriNetX. 
2.  SFTP extract to N3C. 

1. TriNetX runs phenotype and extract 
scripts on the site’s behalf.  

SQL 1. Download the SQL code. 
2. Configure local variables (schema 

names, etc.) 
3. Run phenotype script. 
4. Run extract scripts, one at a time.  
5. Extract results to individual files using 

the N3C directory structure, naming 
conventions, file format. 

6. SFTP extract to N3C. 

None 

 

DATA INGESTION AND HARMONIZATION 

N3C aims to support consistency in the data acquisition process across the four CDMs. Simply 
aggregating those data together is insufficient. Not only does each model have different structures and 
values, but heterogeneity exists within models. The goal of the Data Ingestion and Harmonization 
workstream is to align and harmonize the syntax and semantics of data from all contributing sites into a 
single data model, retaining as much specificity and original clinical intent as possible as well as data 
quality and transparency. These steps support N3C’s ultimate goal of producing comparable and 
consistent data to enable effective and efficient analytics[70,71]. 

Target Data Model Selection 

A single data model enables scalable analytics. The emergent Health Level Seven International (HL7) 
Fast Healthcare Interoperability Resources (FHIR)[72] standard may form a pluripotent research data 
model in complete synchrony with EHR source data[73]. The CD2H[74] has been working through its 
Next Generation Data Sharing core and catalyzing the formation of the Vulcan FHIR Accelerator for 
Translational Research[75] to advance this strategic goal. However, FHIR is not sufficiently mature in its 
specification and, more pertinently, its development of “bulk” multi-patient research data transfers. The 
most expedient alternative was to select among the four contributing CDMs. All the CDMs enjoy large, 
dedicated communities continuously contributing to their development, and all are valuable to COVID-19 
research. As a tactical choice, OMOP 5.3.1[76] was selected as the canonical model of N3C due to its 
maturity, documentation, and  open source quality monitoring library, data maintenance, term mapping, 
and analytic tools[77,78]. 

Model Harmonization Mappings 

With OMOP 5.3.1 selected as the target data model, it was first necessary to map tables, fields, and 

https://paperpile.com/c/iDkGdc/h7l9+8sfc
https://paperpile.com/c/iDkGdc/nsoJ
https://paperpile.com/c/iDkGdc/bVeh
https://paperpile.com/c/iDkGdc/opE6
https://paperpile.com/c/iDkGdc/7RqR
https://paperpile.com/c/iDkGdc/9y6U
https://paperpile.com/c/iDkGdc/y33m+VRxb


Version 2020-07-14; In press (JAMIA open)                                                                                      11 

value sets from ACT 2.0, PCORnet 5.1, and TriNetX to OMOP 5.3.1 to serve as a foundation for N3C’s 
extract - transform - load (ETL) processes. Fortunately, as part of the Common Data Model 
Harmonization (CDMH)[79] project, CD2H and related federal projects had initiated mapping from each 
CDM to the BRIDG[80] and FHIR standards. N3C was able to leverage this previous work to jumpstart 
the required mappings between each CDM and OMOP 5.3.1. 

N3C worked with contractors and colleagues from the CDMH project to build two sets of harmonization 
data for each source CDM: 

1. Syntactic mapping for each CDM field to a corresponding table/field in OMOP with conversion 
logic 

2. Semantic mapping of where in the OMOP vocabulary each value in each value set should be 
mapped. 

N3C hosted numerous review and validation meetings for each set of source-to-target mappings. All 
meetings included subject matter experts (SMEs) from the source CDMs, and SMEs from the OHDSI 
community. All mappings at all stages of development are publicly available on GitHub[81]. 

Extract - Transform - Load 

When a participating site submits a data payload to N3C, the data submission flows through an ETL 
pipeline that leverages the aforementioned mappings. The pipeline is powered by Adeptia[82], a cloud-
based Platform as a Service on the secure NCATS Amazon Web Services (AWS) production cloud. Prior 
to loading a given data payload into the production N3C database, the payload must first undergo a series 
of data quality checks as part of the ingestion process. This process, described below, ensures that any 
errors can be corrected, and that site-specific idiosyncrasies can be accounted for and known to 
downstream users. 

Data Quality Processes 

In large data aggregation projects, where many sources combine to form a larger dataset, there are 
issues caused by the data heterogeneity which impact data quality (DQ)[83,84]. DQ measures, including 
consistency, correctness, concordance, currency, and plausibility, are important to support analysis and 
computation[85,86]. Many large-scale data aggregation projects benefit from focusing on a set of 
contextual use cases or a defined population research domain.[87–89] For N3C, we developed an 
approach to DQ that addresses the downstream application of the data for machine learning and 
statistical analytics .  

In order to establish a starting point, the N3C Data Ingestion and Harmonization workstream became 
familiar with a wide array of available DQ tools and processes. They met with SMEs from each of the 
source CDMs, focusing on the DQ approaches and tools employed in their native implementations (see 
Table 4). These native approaches became a foundation on which N3C could build its own DQ processes. 

 

  

https://paperpile.com/c/iDkGdc/nyj5
https://paperpile.com/c/iDkGdc/DJt1
https://paperpile.com/c/iDkGdc/zgqN
https://paperpile.com/c/iDkGdc/Yn2Fo
https://paperpile.com/c/iDkGdc/X4v4+jirh
https://paperpile.com/c/iDkGdc/WI9N+043a
https://paperpile.com/c/iDkGdc/r3MW+Z6TD+oYNN
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Table 4. Data quality tools and methods evaluated. 

Tool Type Tool 

Native CDM 
DQ Processes 

PCORnet Data Check Scripts (v8.0)[90] 

ACT “Smoke” tests[91] 

TriNetX Focused Curation Process 

Adeptia Platform Processes 
Process automation support[92] 

Data & Map validation functions[93] 

OHDSI 
Collaborative 
Tools 

Data Quality Dashboard Data quality tests of OMOP databases[89] 

Atlas Design/execute analytics on OMOP databases[94] 

Achilles Data characterization of OMOP databases[95] 

White Rabbit ETL preparation and support[96] 

Custom Scripts SQL, R 

 

N3C Ingestion and Harmonization Data Quality Checks 

The Data Ingestion & Harmonization workstream developed strategies to assess and improve DQ within 
the N3C ingestion pipeline. This group considered (1) what DQ requirements were appropriate for N3C, 
(2) which tools and methods could be used to support DQ, and (3) where in the ingestion pipeline DQ 
checks should be instantiated. 

In these discussions, the group agreed that a “light touch” was the best approach to DQ for N3C; to pass 
along the data as they are, and only in some cases make “cleaning” corrections. These cleaning steps 
would seek to correct the data only to the extent required to support computation and OMOP data model 
conformance. The exception to this is data related to COVID-19 tests, as we anticipate variance in how 
organizations code COVID-19 tests, particularly in the very early stages of the pandemic. Due to the 
criticality of these data for N3C, we corrected erroneous coding using text data indicating COVID-19 
status, which would otherwise be lost.[97]  

To ensure that data loss was minimized in the data transformation process, we made the decision to 
retain the raw source data during and after the mapping and transformation process to preserve 
contextual details about the data for meta-analyses downstream. Additional detail about the N3C Data 
Quality Checks and ingestion process is provided in Figure 3.  

https://paperpile.com/c/iDkGdc/LxzU
https://paperpile.com/c/iDkGdc/pAaS
https://paperpile.com/c/iDkGdc/6r8r
https://paperpile.com/c/iDkGdc/uG5v
https://paperpile.com/c/iDkGdc/oYNN
https://paperpile.com/c/iDkGdc/mrAg
https://paperpile.com/c/iDkGdc/PqUI
https://paperpile.com/c/iDkGdc/ZqVn
https://paperpile.com/c/iDkGdc/s6Jp
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Figure 3. N3C Data Quality Checks.  At the sites, the extraction script performs a check for duplicate primary keys; if duplicate 
keys are found, the extraction fails until the site resolves the error. When extraction is successfully completed, a data “manifest” 
is created that contains metadata about the site and the payload. Site personnel then sFTP the data to N3C to be queued for 
ingestion. The first step in the ingestion process checks that the payload is consistent with the formatting requirements and the 
manifest file. Next, the payload is loaded into a database modeled after the payload’s native CDM, which ensures source data 
model conformance. Next, a series of data quality checks including a subset of COVID-19-specific code validations are 
performed, and if needed, minimal corrections are made. Any corrections are recorded and added to the payload documentation. 
Next, the payload is transformed to OMOP 5.3.1 using the validated maps from the payload’s native CDM. Once in OMOP 5.3.1, 
a subset of the OHDSI Data Quality Dashboard tests are run, and the results of these are added to the payload documentation. 
The payload is then exported to a merged database containing all the previously harmonized site data payloads, where it is then 
checked for conformance again before export to the analytics pipeline. 

COLLABORATIVE ANALYTICS & THE N3C ENCLAVE 

The goals of the Collaborative Analytics workstream are to ensure secure stewardship of N3C data; 
design and disseminate analyses; integrate community tools and resources; provide tracking and 
attribution of users, results, and contributions; and enable novel approaches to data sharing (Figure 4).  



Version 2020-07-14; In press (JAMIA open)                                                                                      14 

 

Figure 4. N3C Enclave. The analytical environment for N3C is a secure, virtualized, cloud-based platform. Within the N3C 
Enclave, researchers have access to raw data, as well as transformed and harmonized datasets derived by other researchers. 
Analytical tools hosted within the environment support complex ETL, generation of COVID-19 specific data elements, statistical 
analysis, machine learning, and rich visualizations. Third-party tools contributed by the community can be integrated into the 
environment; current tools include OHDSI tools and the Leaf patient cohort builder. N3C is developing methods for integration 
of genomic, imaging, and other data modalities. 

A “data enclave” is a secure data and computing environment, designed to facilitate virtual access to 

hosted data with safeguards to prohibit or limit data export[98]. The N3C Enclave meets this definition as 

a virtual, secure, cloud-based data enclave—controlling user access with regulatory and technical 
protections, and prohibiting the download of patient-level data from the N3C environment—while enabling 
COVID-19 analysis by the research community. The N3C Enclave is managed by NCATS, which serves 
as the legal custodian of all data within the environment (see Governance). Hosted within the N3C 
Enclave is Palantir Foundry, a data science platform enabling complex and reproducible analysis using 
standard open-source, analytical packages in languages such as Python, R, SQL, and Java, as well as 
point-and-click and dashboard-style analytical tools. Standard packages for statistical analysis and 
machine learning, such as Tensorflow, scikit-learn, and others are available, and backed by Apache 
Spark allowing operations at very large data scales. Community contributed tools and resources are also 
being made available, the first deployments are listed in Table 5. 

The platform is certified as Federal Risk and Authorization Management Program (FedRAMP) 
Moderate[99], a government security standard for unclassified but highly sensitive data. To enable 
research collaboration on sensitive EHR data, the N3C Enclave supports fine-grained access controls 
and auditing mechanisms, allowing multiple users to work securely in a single system. The system 
provides “limited realms”, where users are granted access to specifically designated data and resources 
such as Limited DataSet (LDS) and Safe-Harbor data. Additional security and auditing mechanisms 
include the ability to limit patient-level data access, read and write access to data sets, and user access, 
auditing, and tracing.  

https://paperpile.com/c/iDkGdc/feKI
https://paperpile.com/c/iDkGdc/YV7p
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As outlined in Figure 2, investigators have restricted access to LDS data without project specific IRB 
reviews. This is mediated by the designation of a few software agents, such as cross tabulation, logistic 
regression, mapping and other related visualizations, as having privileged access to the LDS data in a 
manner that 1) prohibits users from seeing the underlying patient-level data, and 2) inhibits the display of 
tables or cells that comprise less than 10 patients. Through this enclave functionality, secure analyses of 
data containing limited PHI (LDS) can proceed without compromising privacy or confidentiality. The 
outputs from these specially designated software packages are regarded as results, and are not subject 
to human subjects data restrictions.  

Table 5. Examples of community contributed tools integrated within the N3C computing environment.  

Tool Description 

OHDSI Atlas OMOP-optimized tools for cohort querying and analysis. Data quality; data and 
cohort definition; rapid & reliable phenotype development[100]; phenotype performance 
evaluation[101]; integration of validated phenotypes definitions into study skeletons that 
learn and validate predictive models[102] and execute a variety of comparative cohort 
study designs using empirically validated best practices[103–105]. 

LOINC2HPO Mapping of LOINC-encoded laboratory test results to Human Phenotype Ontology 
(HPO). Interoperability for lab results or radiologic findings with OMOP CDM; phenotypic 
summarization for use in machine learning algorithms, semantic algorithms, and 
knowledge graph-based applications[106]. 

NCATS Biomedical 
Data Translator 

Translational integration with basic research data and literature knowledge. 
Symptom‐based diagnosis of diseases linked to research‐based molecular and cellular 

characterizations[107,108][109]; suite of resources include the Biolink Model[110], a 
distributed API architecture, and a variety of knowledge graphs (KGs) covering a range 
of biological entities such as genes, biological processes, and diseases; the KG-COVID-
19[111] knowledge graph also includes literature annotation. 

Leaf Web-based cohort builder. Study feasibility for clinician investigators with limited 
informatics skills[112]; hierarchical concepts and ontologies to construct SQL query 
building blocks, exposed by a simple drag-and-drop user interface. 

Transparency and reproducibility are fundamental to the prescribed use of the N3C Enclave[113]. The 
platform automatically builds a provenance graph for every dataset and analysis. Each artifact in the 
platform is stored as an immutable object, enabling full Git-like traceability on all changes. Each workflow 
includes extensive metadata describing all of the inputs, the user who triggered it, the build environment, 
and the required packages. Researchers can confidently share results as “reports,” which include a 
precise record of how they were generated, allowing other researchers to replicate and build on the 
analyses. Key capabilities are: 

● Raw data provenance: Support for provenance capture of imported data, and recording of 
metadata for understanding the origins of each dataset. 

● Data lineages: Data transformations recorded as a dependency graph, enabling full 
(re)construction of data lineage. 

● Versioning: Data versioning, allowing full analytical reproducibility. 

● Validation and errors: Runtime characteristics monitored and recorded. 

● Attribution: Fine-grained attribution of individuals, groups, and organizations and a record of their 
contributions according to the Contributor Attribution Model (Figure 5).  

https://paperpile.com/c/iDkGdc/31Do
https://paperpile.com/c/iDkGdc/q7LP
https://paperpile.com/c/iDkGdc/qjMW
https://paperpile.com/c/iDkGdc/8DL8+Nflj+Y9PW
https://paperpile.com/c/iDkGdc/Bruz
https://paperpile.com/c/iDkGdc/D87E+KpmB
https://paperpile.com/c/iDkGdc/xJ1f
https://paperpile.com/c/iDkGdc/XSU2
https://paperpile.com/c/iDkGdc/OYbG
https://paperpile.com/c/iDkGdc/Pwfi
https://paperpile.com/c/iDkGdc/TYyh
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Figure 5. The Contributor Attribution Model (CAM). In the N3C Enclave, CAM is used to aggregate all contributions to any 
given workflow or report generated with a specific declaration of what exactly each person contributed, supporting the notion of 
transitive credit[52]. ORCID identifiers are used to identify users. An example contributor to an artifact used in the N3C is shown 
on the lower panel.  

SYNTHETIC CLINICAL DATA PILOT 

The creation of synthetic clinical data represents a unique opportunity for N3C to more widely disseminate 
and provide greater utility for the N3C dataset. Current state-of-the-art approaches for the generation of 
synthetic clinical data can be broadly classified as: 

● Statistical simulation: Statistical models or profiles of normal human physiology and/or disease 
states are created based upon real-world data. The ensuing simulated patients and their data are 
generally consistent with population-level norms[114–116]. 

● Computational derivation: Computational models of real-world data are produced on-demand, 
which can be used to produce novel data in a multi-dimensional space (e.g., features) that adhere 
to the quantitative distributions and co-variance of the original source data. When generating 
these types of models, data content and statistical features are a function of the input dataset. 
The process can be repeated multiple times with the same source data producing multiple 
derivative synthetic datasets. Further, such computationally derived synthetic datasets do not 
share mutual information with source data, minimizing the potential for re-
identification[45,46,117–119]. 

N3C has launched a pilot to evaluate the creation of synthetic data from the N3C LDS, and will focus on 
validating the synthetic data for key analyses against those performed on the LDS in areas such as 
identifying patients for whom COVID-19 testing can/should impact clinical management; anticipating 
severity of disease, risk of death, and potential response to therapies; and geospatial analytics for 
enhanced insights into geographic hotspots and for quantifying the contribution of zip code level SDoH 
in predictive analytics. 

https://paperpile.com/c/iDkGdc/j0ZR
https://paperpile.com/c/iDkGdc/KCDv+F7m8+ofFK
https://paperpile.com/c/iDkGdc/HKNR+iZEz+7wsk+6Rpi+XJle
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DISCUSSION 

Analytical innovation and open science on sensitive data 

The N3C architecture, dataset, and analytic environment is a powerful platform for developing machine 
learning algorithms, statistical models, and clinical decision support tools. Analytic models are able to 
use time series, clinical, and laboratory information to predict progression, assess need and efficacy of 
clinical interventions, and predict long term sequelae. Researchers are able to leverage both “raw” EHR 
data, and carefully curated derivatives, building upon the work of prior or parallel studies. The platform 
also supports translational informatics by making available basic research data and knowledge in the 
form of knowledge graphs and related tools, mined and annotated literature, and clinical EHR data in the 
same analytical space. Semantic interoperability enables questions to aid drug and mechanism discovery 
efforts such as: “What protein targets are activated by drugs that show effectiveness among patients with 
COVID-19 infection? What genetic variants are associated with recovery from COVID-19 infection? What 
biological pathways contribute to disease severity among patients infected with COVID-19?.”  

N3C offers an innovative model for deeply collaborative analytics on clinical data, promoting open and 
transparent research practices on sensitive EHR data at scale. Recent high-profile manuscript retractions 
in prominent journals underscore the imperative for transparency and reproducibility in COVID-19 
research[120][21,121]. Attribution is native to the system, and supports the notion of transitive credit[52] 
for all contributors. Investigators are encouraged to pre-specify hypotheses or other study goals in a 
publicly-available and versioned study protocol and to maintain full documentation of all code and 
protocol revisions in order to mitigate the risk of p-hacking and promote the legibility and traceability of 
all major study design and analytic choices[122]. The N3C Enclave allows and, indeed, requires sharing 
of software, results, and methods. It is our belief that by allowing the research community to work together 
in this way, we aree able to rapidly increase our collective understanding of COVID-19 and identify 
effective approaches for prevention and treatment, ultimately curbing the effects of this pandemic on our 
nation and world.  

Status of data availability within the N3C Enclave 

At the time of publication, there have been 49 DTAs executed, 27 IRB protocols approved (23 reliance, 
4 local), and 11 institutions have deposited data within the N3C (5 PCORnet, 3 OMOP, 2 TriNetX, and 1 
ACT). Overall, the cohort from the 11 sites to date represents 33K positive COVID-19 cases out of ~513K 
total patients. We anticipate ~150K positive cases to be included in the N3C Enclave by Sept. 1st, 2020. 

What kinds of analyses are enabled? 

COVID-19 has proven to be a novel, heterogeneous disease, particularly in terms of range of symptoms 
and signs, severity and clinical course. By integrating data from multiple sites, we enable researchers 
to explore questions with vastly more statistical power than is achievable at individual sites and to 
use machine learning methods at scale.  

N3C enables us to address several important questions related to the diagnosis and management of 
COVID-19. For example, how are different types of antigen and antibody tests for SARS-CoV-2 being 
used across the country? What other laboratory and imaging protocols are being used in conjunction with 
viral testing in ambulatory, urgent care, and emergency department environments? What place (if any) 
does convalescent plasma have in COVID-19 treatments? What are the markers for and best practices 
to prevent COVID19-related clotting disorders? What are the best practices for inflammatory monitoring 
prior to cytokine storm syndrome? The first three of these might be answerable in a federated network, 
but the last two require a centralized data resource such as N3C. 

N3C is a well-suited resource to clinically characterize and deeply phenotype a very large cohort of 
patients with COVID-19. In addition to frequently reported metrics such as rates of hospitalization and 
ICU admission, ventilator, and renal replacement therapy utilization, these analyses can assess variation 

https://paperpile.com/c/iDkGdc/pf98
https://paperpile.com/c/iDkGdc/qfmB+6I4C
https://paperpile.com/c/iDkGdc/j0ZR
https://paperpile.com/c/iDkGdc/lzGY
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in duration of need for intensive clinical support. Detailed temporal analyses of the progression of 
respiratory and other organ system dysfunctions are possible. Prevalence and predictors of complications 
such as cardiomyopathy, thrombosis, acute kidney injury, hypoxemia, stroke, and delirium can be 
evaluated. For populations with rare complications, such as the emergence of Kawasaki disease-like 
inflammatory symptoms, a centralized dataset provides the statistical power to characterize emerging 
adverse effects. Once accurate models to predict complications are available, tools can be implemented 
for prevention, early detection, and intervention. For prediction tasks based on longitudinal data, a variety 
of methods based on recurrent neural network architectures can be leveraged[123]. To characterize 
patient subtypes, tensor factorization approaches have been shown to be quite effective for similar 
tasks[124]. Accurate machine learning-based CDS tool development requires algorithm optimization, a 
process that is greatly facilitated by a centralized data resource. 

Detailed medication and other clinical data in N3C also enable analyses of treatment pathways and 
patient response. These analyses can encompass medications received prior to and concurrent with 
the disease course as well as specific drug therapies, such as antivirals like remdesivir or 
hydroxychloroquine, tocilizumab, corticosteroids, broad-spectrum antibiotics, antifungals, and 
therapeutic anticoagulation. They can also provide evidence for best practices in clinical care such as 
supplemental oxygen, proning[125], noninvasive positive pressure ventilation, invasive ventilation, and 
extracorporeal membrane oxygenation. N3C will be well-positioned to generate immediately testable 
hypotheses about combinations and sequences of therapies, helping researchers to better design, 
prioritize, and analyze randomized trials. Analyses can take into account known outcome predictors 
including 1) medical history, comorbidities, and indicators such as hypertension, diabetes, and body mass 
index; 2) progression of vital signs; and 3) laboratory data such as electrolytes, markers of organ 
dysfunction, measures of inflammation, and indicators of possible thrombosis or approaching cytokine 
storm[126]. Investigators can develop tools to predict treatment response based on these analyses. 
Clinicians could match a patient’s phenotype to one or more distinct groups of patients in the N3C dataset 
with known clinical outcomes. Such patient matching can be done at the point of care and provide real-
time precision reference information for CDS, potentially based on patient similarity learning[127]. 
Furthermore, N3C facilitates the use of specific algorithms that can increase the unbiased selection of 
cohorts that have complete data, and which can be applied to most EHR studies[128,129].  

The size and national coverage of N3C data make it a unique source of COVID-19 data for population 
health segmentation and risk stratification. Segmenting the population for the risk of various 
outcomes (e.g., clinical, utilization) allows more efficient and effective resource allocation and 
interventions[130] as well as enable healthcare providers to measure and balance the risk of COVID-19 
complications versus other clinical conditions and morbidities. For example, identifying patients who will 
benefit the most from the anticipated COVID-19 vaccination is of utmost importance[131]. Assessing 
heterogeneity of treatment/vaccine effect at the scale necessary is facilitated by the centralized nature of 
N3C. 

The pandemic has amplified and exacerbated the effects of systemic racism and long-standing social 
and economic disparities on health and healthcare[132–135]. N3C-based studies can support healthcare 
providers to identify clinical outcome disparities and social determinants of health (SDoH), as well 
as to help public health officials and policy makers to identify inequalities on a systemic level (e.g., 
analyzing statewide claims or EHR data using models developed based on N3C data). The N3C can 
expedite analytics regarding the impact of COVID-19 on different segments of the population, including 
racial and ethnic groups, rural population, children, pregnant women and newborns, and residents of 
communal living. Several sites are contributing structured data about the SDoH (e.g. race, ethnicity, zip 
code), and geo-derived SDoH factors or environmental pollution can also be associated based on the zip 
code. N3C also provides a unique opportunity to enhance the role of data science and population health 
informatics in bridging the gap between clinical care, public health, and social services[136]; thus, 
collectively aiming for predictive models promoting equity for all minorities[137] in the current and 
potential future COVID-19 outbreaks. 

https://paperpile.com/c/iDkGdc/or8n
https://paperpile.com/c/iDkGdc/BHgp
https://paperpile.com/c/iDkGdc/mxsb
https://paperpile.com/c/iDkGdc/isa1
https://paperpile.com/c/iDkGdc/2VFx
https://paperpile.com/c/iDkGdc/hJXl+dPpl
https://paperpile.com/c/iDkGdc/RsJd
https://paperpile.com/c/iDkGdc/unBg
https://paperpile.com/c/iDkGdc/gph2+T2IH+dvhP+k1zX
https://paperpile.com/c/iDkGdc/kMCT
https://paperpile.com/c/iDkGdc/iHOQ
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Integrating data from multiple clinical research systems has proven effective for estimating potential 
research cohorts, identifying eligible patients, supporting current studies, and enabling new analyses 
[73,138]. However, there are a number of caveats and N3C is no exception. Patient care data and the 
processes that generate and capture them differ from good research practices[139]. EHR data captured 
in real time are often wrong (e.g., incorrect diagnosis) or may have originated from a different patient. 
The available data may not convey the complete clinical picture due to fragmentation of patient care. For 
example, a patient’s initial coronavirus test results may be performed by a government laboratory and 
not transmitted to the patient’s EHR. Finally, patient care data rarely have completeness, reliability, 
granularity, and competent coding found in good, prospective clinical studies. This is not to say that 
research using the N3C Enclave will be flawed. The sheer magnitude of the dataset provides a buffer 
against the effects of systematic reporting bias. A number of methods can be used for considering data 
from multiple institutions, for example by applying methods used in meta-analysis[140]. 

CONCLUSION 

N3C has been driven by passionate individuals through a complicated world of regulation and habituation 
by healthcare organizations. By opening the door to a broad analytic community, we bring to the table 
new skill sets, diverse viewpoints, and additional opportunities for novel approaches. N3C is driving new 
standards in openness for collaboration on sensitive clinical data, and builds upon the infrastructure 
developed nationwide over the past decades.  

Specifically, the N3C model will continue to be refined and streamlined to provide a scalable approach 
that can be leveraged to help manage future waves of COVID-19, unforeseen novel diseases, and other 
major health crises, as well as long-standing challenges in healthcare. While N3C is focused on the US, 
this is a global pandemic and we must identify ways to collaborate with other international groups who 
are building similar infrastructure for a global approach; such conversations are underway[141,142].  
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