Source: Țălu, Ș., Yadav, R. P., Lainović, T., Méndez-Albores, A., Trejo, G., Kukuruzović, D., Beryani Nezafat, N., <u>Shafiekhani, A.</u>, Solaymani, S. (2018). The effect of dental LED light-curing unit photoactivation mode on 3D surface morphology of dental nanocomposites evaluated by two-dimensional multifractal detrended fluctuation analysis. *Microscopy Research and Technique*, *81*(10), 1223-1230. <u>https://doi.org/10.1002/jemt.23123</u>

The effect of dental LED light-curing unit photoactivation mode on 3D surface morphology of dental nanocomposites evaluated by two-dimensional multifractal detrended fluctuation analysis

Ştefan Ţ!alu¹, Ram Pratap Yadav², Tijana Lainovic³, Alia Méndez-Albores⁴, Gabriel Trejo⁵ Dragan Kukuruzovic⁶, Negin Beryani Nezafat⁷, <u>Azizollah Shafiekhani⁸</u>, Shahram Solaymani⁷

- ² Physics Department, University of Allahabad, Allahabad, India.
- ³ Faculty of Medicine, School of Dentistry, University of Novi Sad, Novi Sad, Serbia.
- ⁴ Institute of Sciences-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, Puebla, Mexico.
- ⁵ Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Querétaro, Mexico.
- ⁶ Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia.
- ⁷ Young Researchers and Elite Club, West Tehran Branch, Islamic Azad University, Tehran, Iran.
- ⁸ Department of Physics, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran.

Abstract

The objective of this study was to evaluate the effect of two photoactivation modes of dental LED light-curing unit (LCUs) (conventional and "Soft Start" mode) on surface texture parameters of two dental resin-based nanocomposites. LED LCUs were considered as standard light-curing devices in contemporary dental practice. Atomic force microscopy (AFM) was applied to investigate surface morphology on $90 \times 90 \ \mu\text{m}^2$ scanning area through 2D multifractal detrended fluctuation analysis with computational algorithms basis. In order to compare 3D surface roughness at nanometer scale, singularity spectrum $f[\alpha]$ was used which characterize local scale properties of multifractal nature of samples. The results confirmed that larger spectrum width $\Delta \alpha$ ($\Delta \alpha = \alpha_{max} - \alpha_{min}$) of $f(\alpha)$ is associated with non-uniform surface morphology. Moreover, materials whose polymerization was photoactivated by the "soft start" polymerization mode, showed better quality of the surface microstructure with lower values of AFM surface texture parameters.

Keywords: Atomic force microscopy, Composite dental resin, Nanocomposite, Photoactivation modes, Surface roughness, 2D multifractal detrended fluctuation analysis.

¹ The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, ClujNapoca, Cluj County, Romania.