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Abstract
In the process of reconstructing a historical event such as a rock concert only from video, the reconstruction of faces and

expressions of the musicians is obviously important. However, in the process of rebuilding appearance, because of the low

quality of the video of the recorded concert, the result of the reconstruction may be far from the real appearance. In this

paper, a robust 3D face reconstruction application is described that can be applied to a video recording. The application

first uses DeblurGAN program to run anti-ambiguity calculation and removes the ambiguity in the concert video. Then, the

super-resolution program is used to enlarge every frame of the concert video by four times, thus making every frame of the

video clearer. Finally, the 3D faces are obtained after 3D reconstruction of the processed video frames via the

3DMM_CNN program.
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1 Introduction

In recent years, three-dimensional face modeling and

reconstruction technology have attracted more and more

attention in the field of computer vision and computer

graphics. Previously, many researchers have proposed how

to reconstruct three-dimensional shapes from two-dimen-

sional images. However, most algorithms require multiple

images or videos to initialize the process of 3D face

reconstruction. In many applications, only one image is

available. Although some methods only use a single image

for 3D face reconstruction, the resulting three-dimensional

face is not realistic enough [1]. Therefore, we need an

algorithm that can reconstruct a realistic three-dimensional

face from a single image. Some researchers have proposed

more accurate three-dimensional face algorithm, the most

successful of which is based on the three-dimensional

morphable model (3DMM) [2–10], and the algorithm of

reconstructing three-dimensional face model by composite

analysis and random optimization of multivariate cost

functions. In order to improve the accuracy of facial feature

fitting, the whole face is first fitted, and then, the specific

areas such as eyes, mouth and nose are fitted. The whole

fitting process takes about half a minute. Obviously,

because of this long time, the system is difficult to use in

practice. 3D deformation model (3DMM) is only used for

recognition under limited controlled observation conditions

[11–15]. Based on the three-dimensional deformation

model, an efficient, robust and accurate fitting algorithm,

inverse compositional image alignment (ICIA), is proposed

in document [16] to fit two-dimensional images. This

method greatly improves the fitting efficiency. Previous

work [17] presents a linear shape and texture fitting algo-

rithm. This algorithm is similar to ICIA, and its speed is

five times faster than stochastic optimization algorithm. In

[18], an efficient method of face reconstruction is descri-

bed, which combines 2D with 3D. A single front face

photograph is used to reconstruct a three-dimensional face

model. It requires only general facial expression and nor-

mal illumination. According to a personalized 3D face, a

realistic virtual face can be obtained under different PIEs

(posture, illumination and expression).

The contribution of this paper is to design a robust 3D

face reconstruction application based on the characteristics

of the live video. Firstly, the application uses DeblurGAN

program to run the anti-ambiguity calculation and removes

the ambiguity in the concert video. Then, the super-reso-

lution program named VDSR is used to enlarge every
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frame of the concert video by four times, which makes

every frame of the concert video clearer. Finally, the 3D

face is obtained by 3D reconstructing the processed video

frames via the 3DMM_CNN program.

1.1 Related research

Many previous attempts have been made to estimate the 3D

surface of the face that appears in a single image. Before

considering these, it is important to mention recent multi-

image reconstruction methods using image sets (e.g.,

[19–23]). Recently, the generative countermeasure network

(GAN) has achieved good results in image super-resolution

reconstruction and in painting. GAN can retain the rich

details of the image and create images that are very similar

to the real image.

At present, there is no application of 3DMM to face

recognition from a video of a concert. One reason is that

the face images reconstructed by this method are unsta-

ble from an uncertain perspective. 3D simulation is either

unstable, resulting in a large difference in the same indi-

vidual’s 3D simulation, or it is too generalized, leading to

most of the images being similar. It also explains why

some people recently proposed using rough, simple 3D

shape approximation as a proxy when rendering faces to

new views rather than facial representations [24–27]. We

adopted the method of 3DMM_CNN, which can generate

robust 3D face models from arbitrary face images. And we

used convolution neural network (CNN) to adjust the face

shape and texture of 3DMM according to the input image.

At present, 3D face reconstruction based on multiple

face images can generate 3D face models with high accu-

racy, but a large number of images are needed. However,

3D face reconstruction based on single view appears to be

difficult, which can be divided into the following

categories.

Firstly, statistical shape representations. For example,

the widely used 3DMM method uses many aligned 3D face

shapes for 3D face reconstruction. This method cannot

generate faces with individual features. Recently, CNN has

been used to adjust the face parameters of 3DMM [28].

However, they found that lack of sufficient training data is

a major problem in face recognition. Unlike the algorithm

presented in this paper, they generate training face images

based on the sampling of 3DMM face models. Face images

generated by this method are prone to over-fitting problem

[29]. Therefore, they can only train a shallow residual

network.

Secondly, scene assumption methods. In order to obtain

the correct face reconstruction model, one kind of research

estimates the scene and angle of the input picture. Some

methods use information such as light source, facial

reflection and facial symmetry to estimate [30]. However,

such estimates do not apply in reality [31].

Thirdly, example-based methods. It adjusts the template

3D face according to the input image [32–34]. This method

can be used to generate the invisible side of a face in face

recognition.

Fourthly, landmark fitting methods. This kind of

reconstruction method first detects the facial recognition

points [35, 36] and then compares the recognition points to

the 3D model [37, 38].

2 Methodology

2.1 Implementation of DeblurGAN

Given a blurred image Ib, we expect to reconstruct a clear

image I8. To this end, we constructed a generative coun-

termeasure network and trained a CNN as a generator GhG

and a discriminant network DhD [39].

2.1.1 Network architecture

The overall structure is given in Fig. 1.

The structure of generator CNN is given in Fig. 2.

The network structure is similar to that proposed by

Johnson in the task of style migration. The author added

‘‘ResOut’’ or ‘‘global skip connection.’’ What CNN learns
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is residual, namely IS ¼ IB þ IR. It makes training faster

and model generalization more powerful.

The network structure of the discriminator is the same as

that of PatchGAN.

2.1.2 Loss function

The loss function uses the sum of ‘‘content loss’’ and

‘‘adversarial loss’’:

L ¼ LGAN
|ffl{zffl}

adv loss

þ k � LX
|fflffl{zfflffl}

content loss
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

total loss

In this experiment, k ¼ 100.

2.1.3 Adversarial loss

When training the original GAN (vanilla GAN), the

problems of gradient disappearance and mode collapse

may be encountered, for which it is very difficult to train.

The Wasserstein GAN (WGAN) proposed later uses the

Wasserstein-1 distance to make training less difficult.

Later, Gulrajani and others proposed adding ‘‘gradient

penalty’’ item, which further improved the stability of

training. WGAN-GP achieves stable training on various

GAN structures and hardly needs to adjust the super-pa-

rameters. This paper uses WGAN-GP, adversarial loss

formula as follows:

LGAN ¼
X
N

n¼1

�DhD GhG IB
� �� �

2.1.4 Content loss

Content loss is to evaluate the difference between the

generated clear image and ground truth. Two commonly

used options are L1 (also known as MAE, mean absolute

error) loss and L2 (also known as MSE) loss. Recently,

‘‘perceptual loss’’ has been proposed, which is essentially a

L2 loss, but it calculates the distance between feature map

generated by CNN and feature map of ground truth. Defi-

nitions are as follows:

LX ¼ 1

Wi;jHi;j

X
Wi;j

x¼1

X
Hi;j

y¼1

/i;j I
S

� �

x;y
�/i;j GhG IB

� �� �

x;y

� �2

where /i;j represents the feature map of the output of the

jth convolution layer before the first max pooling layer

(after activation) after the image is input into VGG19 (pre-

trained on ImageNet). Wi;jHi;j represents the dimension of

feature map.
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2.1.5 Motion blur generation

Compared with other image-to-image translation tasks,

such as super-resolution and stylization, it is difficult to

obtain clear–blurred image pairs for training. A common

method is to use high-speed camera to shoot the video, get

clear images from video frames and synthesize blurred

images. Another method is to use a variety of ‘‘blur ker-

nels’’ on clear image convolution to obtain synthetic

blurred images. DeblurGAN is further expanded on the

basis of the existing second method. The proposed method

can simulate a more complex ‘‘blur kernel.’’

Firstly, DeblurGAN adopts Boracchi and Foi’s method

of random motion trajectory generation [40], which is

generated by Markov random process, and then generates

blur kernel by ‘‘sub-pixel interpolation’’ of trajectory.

2.2 VDSR

VDSR is based on the residual network ResNet [41] pro-

posed by He Kaiming in 2015. ResNet has solved the

problem that can not be trained when the network structure

is deep, and its performance has been improved. Residual

network structure has been applied in a lot of work [42].

As was mentioned by the author in the VDSR paper, the

input low-resolution image and the output high-resolution

image are similar to each other to a great extent. That is to

say, the low-frequency information carried by the low-

resolution image is similar to the low-frequency informa-

tion of the high-resolution image. It takes a lot of time to

carry this part in training. In fact, we only need to learn

high-resolution image and low-resolution image. The idea

of residual network structure is particularly suitable for

solving super-resolution problems, which can be said to

affect the subsequent in-depth learning of super-resolution

methods. VDSR is the most direct and obvious structure of

learning residuals. Its network structure is shown in Fig. 3.

VDSR takes the low-resolution image which becomes

the target size after interpolation as the input of the net-

work and then adds the image and the residual learned by

the network to get the final network output. VDSR has four

main contributions: 1. deepening the network structure (20

layers), so that the deeper the network layer, the greater the

field of feeling. This paper chooses a convolution core of

3*3, and the network with the depth of D has (2D ? 1)*

(2D ? 1) field of perception. 2. With residual learning, the

residual image is sparse and most of the values are 0 or

smaller, so the convergence speed is fast. VDSR also

applies adaptive gradient clipping, which limits the gradi-

ent to a certain range, and can speed up the convergence

process. 3. VDSR completes 0 operations on the image

before each convolution, which ensures that all the feature

maps and the final output image are consistent in size, and

solves the problem that the image will become smaller and

smaller through gradual convolution. Experiments show

that the predicted results of the complement 0 operation for

boundary pixels can also be improved. 4. VDSR trains

images of different multiples together, so that a model

trained can solve the problem of super-resolution of dif-

ferent multiples.

2.3 Regressing 3DMM parameters with a CNN

We use CNN to adjust the 3DMM face shape parameter

[43] according to the input face image. At present uncon-

strained face and 3D ground truth data sets are too small for

training depth neural networks. However, we find three

advantages.

Firstly, 3D face can be accurately estimated by multiple

images of the same face.

Secondly, there are many data sets of multiple pictures

of a single individual at present.

Thirdly, there are currently very effective depth neural

networks for face recognition.

2.3.1 Acquisition of training data

We adopted the recently published method of generating

multi-image 3DMM [44]. We use this method to generate

3DMM on CASIA WebFace data set. These 3D face

models serve as ground truth for training our CNN. Multi-

image 3DMM reconstruction consists of two steps: First,

500 K images are selected from CASIA data set to estimate

the parameters of 3DMM. Second, the 3DMM generated

by different photographs of the same individual is aggre-

gated to obtain a single individual’s 3DMM (about 10 K

individuals).

2.3.1.1 The 3DMM representation Our system uses the

popular Basel face model (BFM), which is the best single

view 3D model currently open. The generation model of a

face includes two parts: face type and texture. The gener-

ating function is:

S0 ¼ bs þWSa; T
0 ¼ bt þWTb:

2.3.1.2 Single-image 3DMM fitting Two different meth-

ods were used to match each training picture with 3D MM.

For image I, we estimate that a� and b� represent images

similar to image I. The best face feature point detector

(CLNF) is used to detect K = 68 face feature points Pk 2
R2; k 2 1. . .K and confidence values x. Face feature points
are used to initialize the angle of the input face in the

3DMM coordinate system. The angle is expressed as six

degrees of freedom: angle r ¼ ra; rba; rca
� �

and translation
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t ¼ tX; tY ; tZ½ �. Then, face shape, texture, angle, light and

color are processed.

2.3.1.3 Multi-image 3DMM fitting Multi-image 3D MM

generation is realized by the facial and texture parameters

of 3D MM generated by different images of individual

pool.

�c ¼
PN

i¼1 xi � ci, where
PN

i¼1 xi ¼ 1 is the confidence

values generated for CLNF face feature detection.

2.3.2 Learning to regress pooled 3DMM

For each individual in the data set, there are multiple

images and a single pool’s 3DMM. We use this data to

train the model so that the model can generate similar

3DMM feature vectors according to different pictures of

the same individual.

As shown in Figs. 1, 2 and 3, we use 101-layer deep

ResNet network for face recognition. The output layer of

the neural network is a 198-dimensional 3DMM eigen-

vector. Then, the pooled 3DMM generated by CASIA

image is used as the target value to fine-tune the neural

network. We also tried using the VGG-16 structure, which

turned out to be slightly worse than the ResNet structure.

2.3.2.1 The asymmetric Euclidean loss In our experi-

ments, we found that using Euclidean loss would result in a

lack of detail in the output of 3D faces. Therefore, we

introduce asymmetric Euclidean loss.

L cp; c
� �

¼ k1 � cþ � cmaxk k22
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

over�estimate

þk2 � cþp � cmax

	

	

	

	

	

	

2

2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

under�estimate

;

using the element-wise operators:

cþ¼: abs cð Þ¼: sign cð Þ � c

cþp ¼
:
sign cð Þ � cp

cmax¼
:
max cþ; cþp

� �

:

Among them, c is the target pooled 3DMM value, cp is the
input value and c1;2 is the balance value of over- and under-
estimation errors. In practice, we set k1 ¼ 1; c2 ¼ 3 to

encourage the model to learn more details.

Conv.D(Residual )ReLu.D-1Conv.D-1ReLu-1Conv.1HR HR

Fig. 3 VDSR network structure

Fig. 4 (Left) Face detection on

the original image; (right) face

detection on the deblur image
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2.3.2.2 Neural network super-parameters We use SGD

optimizer with mini-batch of 144, momentum of 0.9 and

L2 weight decay of 0.0005 to train the model. The learning

rate is 0.01. When the verification set loss is saturated, we

reduce the learning rate until the verification set loss stops

decreasing.

2.3.3 Parameter based on 3D–3D recognition

After training, the CNN neural network can convert the

input image into 3DMM parameter cp, which is f : I ! cp.

We use this parameter cp as face feature for face recogni-

tion. The similarity formula of two faces is as follows:

Fig. 5 Comparison of effects of 3DMM_CNN and PRNET

8898 Neural Computing and Applications (2020) 32:8893–8900

123



s c1; c2ð Þ ¼
cp1 � cTp2

cp1
	

	

	

	 � cp2
	

	

	

	

:

In some cases, a single individual has a set of pictures. For

example, in the YTF data set, video contains multiple

frames of a single individual; in the IJB-A data set, we use

multiple data sources (pictures, videos) to simulate the

3DMM of each face frame in each video to get an average

3DMM parameter.

3 Experiment

Figure 4 is a comparison of face detection between the

original image and the deblur image. As can be seen, in the

left image, the effect of face detection is not ideal. Only the

nose and mouth were detected, but the outlines of eyes,

eyebrows and faces were not detected. In the right image,

the outline of the face, eyebrows, eyes, mouth, and nose are

well detected. This shows that the Deblur program

improves the clarity of the blurred image and the recog-

nition rate of image detection. The rendering of the face

contour is using OpenPose [45].

Figure 5 is a comparison between the effects of

Robust3D and PRNET. Among them, (a1)–(e1) are

screenshots of concert videos after Deblur and Super-res-

olution; (a2)–(e2) are three-dimensional face models gen-

erated after PRNET processing; (a3)–(e3) are three-

dimensional face models generated after the treatment of

Robust3D; (a4)–(e4) are the results of facial feature

detection with Robust3D. As shown in the figure, the

image generated by PRNET is more realistic and similar to

the original image, but it is greatly affected by the envi-

ronment and does not filter out the environmental noise.

For example, the right face of the three-dimensional face

generated in (a2) has a black spot on it, which is the

microphone. In (a3), there is no microphone noise. This is

because (a3) using the method of 3DMM, only the features

of the face and other effective factors are collected, so the

environmental noise is filtered out. Similarly, in (c2) there

are environmental noises such as microphones, and in (c3),

there are no environmental noises such as microphones. In

addition, in (d2), the features of human face such as human

eyes are not clear and there is a phenomenon of human

eyes missing, which is due to the small face in the original

image (d1). In (d3), human eyes and other features are very

clear, which is also the advantage of using the 3DMM

method.

4 Conclusion

By training CNN, the input image can be converted to

3DMM parameters and 3D face reconstruction can be

performed. The accuracy of the Robust3D method is higher

than that of the existing methods. At the same time, the

performance is excellent on the live video data set of the

concert. The disadvantage of using Robust3D is that there

are some differences between the reconstructed face and

the real face. In future, we will improve our work by Big

data technology [46, 47].
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